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PREFACE 

The basic philosophy of the Tropenbos Programme involves an integrated 
methodical approach comprising studies on the earth's physical and biotic aspects 
as well as social studies in humid tropical forests. To ensure comparability of the 
results of research at the various locations and also to facilitate transfer and 
extrapolation of these data, Tropenbos promotes the use of common research 
methodologies. 
In order to establish guidelines for a common methodology for nutrient and moisture 
cycling in tropical forests, the Working Group for a Common Methodology on 

Nutrient and Moisture Cycling was initiated in January 1987. This working group 
consisted of soil scientists, geologists, vegetation experts/ecologists and foresters 
of the University of Amsterdam (Laboratory of Physical Geography and Soil 
Science), the Wageningen Agricultural University (Department of Forestry and 
Forest Ecology; Department of Soil Science and Geology; Department of Soil 
Science and Plant Nutrition), the University of Groningen, (Department of Physical 
Geography and Soil Science), the International Soil Reference and Information 
Centre (ISRIC) at Wageningen, the Institute for Soil Fertility, (IB) at Haren, the 
Royal Tropical Institute at Amsterdam, the Netherlands Soil Survey Institute 
(STIBOKA) at Wageningen, Tropenbos Wageningen, and UNESCO at Paris. 

Meetings of this working group brought together the activities of various profes­
sionally-related but hitherto independently operating institutions. In the context of 
the working group's aim to standardize methods and outputs of research, the 
meetings generated discussions as to the most desirable, but still practical, approach 
to study nutrient and moisture cycling in humid tropical forest areas. 
In these meetings the following subjects were discussed: 
- observation density in space and time and standardization of sampling; 
- type and procedure of laboratory analyses; 
- modeling of nutrient and moisture cycling. 

In an early stage, the working group recognized the usefulness of models. In order 
to expedite the development of a model, Tropenbos made funds available for the 
Wageningen Agricultural University to contract scientists for that purpose. 

This report forms the output of a project entitled "Understanding Nutrient and 
Moisture Cycling in Humid Tropical Forest Land (Phase I)". 

The objective of the project was to develop a simulation model that 
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gives a quantitative description of moisture and nutrient cycling in Tropical 
Rain Forest and if possible in derived ecosystems, like those under shifting 
cultivation, tree-crops, permanent cultivation of annual crops; 
calculates growth of vegetation (primary forest, secondary vegetation, tree­
crops, annual crops) as output of nutrient and moisture cycling. 

This project can be considered as the follow-up of the work by the mentioned 
Working Group on Nutrients and Moisture Cycling (Van Breemen, 1988), and of 
a preceding exercise in nutrient modeling at the Department of Soil Science and 
Plant Nutrition of the Agricultural University of Wageningen (Noij, 1988; Noij et 
al., 1988). At the same department the present model was developed by ir. I.G A.M. 
Noij (soil fertility, crop growth modeling), dr.ir. B.H. Janssen (fertility of tropical 
soils, modeling of (soil) organic-matter mineralization), ir. L.G. Wesselink (mo­
deling of ecopedological processes) and dr.ir. J.J.M. van Grinsven (modeling of 
(soil) chemical and hydrological processes). Prof.dr.ir. N. van Breemen 
(Wageningen Agricultural University) and prof.dr. J.M. Verstraten (University of 
Amsterdam) acted as advisors on ad-hoe basis. 

It was felt practical to subdivide the reporting on the project into three parts: 

- Part I gives the headlines of the model, and indicates its strong and weak points 
and possible uses. It is meant for interested scientists and officers who themselves 
are not specialized in modeling. 

- Part II consists of a literature study on nutrient relationships in especially the 
vegetation compartment of the rain forest ecosystem. This study was needed to 
find data and elaborate them as to make them suited for incorporation in the 
model. 

- Part III describes the model in its very details. It forms the heart of the matter 
and can he regarded as a background document for those who want to use the 
model, understand the code, modify the code, or use model formulations for 
other programs. 

The report is the result of a joint action of the four authors. Janssen acted as editor 
and is the main author of Part I, Noij is the main author of Part II, and Wesselink 
and Van Grinsven are the main authors of Part III and of the computer programme. 

The authors are indebted to dr. W.G. Sombroek, who in 1986 as member of the 
Tropenhos Programme Commission, initiated both our 'Working Group on 
Nutrient and Moisture Cycling' and the sister 'Working Group for a Common 
Methodology on Land Inventory and Forest Land Evaluation'. Thanks are also due 
to all working group participants. Dr. W.B.J. Jonkers, Tropenhos, and Mr. V.G. 
Jetten, University of Utrecht, Department of Earth Sciences contributed substan-
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tially to the readability of the text, by their much appreciated critical comments on 
the manuscript. Last but not least thanks go to Mrs. M. Slootman-Vermeer for her 
patience when typing the manuscript. 

More information on the scientific background of the model can be obtained from 
or via the project coordinator Dr. B.H. Janssen, Department of Soil Science and 
Plant Nutrition, Wageningen Agricultural University, P.O. Box 8005, 6700 EC 
W ageningen, The Netherlands. 
(The cited literature can be found in the References list of Part I). 
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INTRODUCTION 

Tropical forest research has often been scattered, mono-disciplinary and of short 
duration, without effective application in the area itself, or without transfer of results 
of the regions. This applies not only to many research programmes of institutions 
in the tropics, where it is caused by repeated shortage of funds, lack of trained 
manpower, etc. It also, and maybe even more so, prevails at European and North 
American research centres and international development agencies, which often 
focus on scientific publications, or lack contact with local institutions dealing with 
land use planning. As a result, the information gathered is not comparable, or it 
does not get to the right people. 

Tropenbos intends to contribute to a more systematic and more interdisciplinary 
research approach which should result in sound land-use planning aimed at using 
tropical forests and forest lands on a sustainable basis, while safeguarding unique 
ecological values and macro-environmental functions of the regions concerned. 
Transfer of information and experience on the use of tropical forests will be 
facilitated, within and between countries, by developing and promoting a common 

overall approach, as well as common methodologies per discipline. Sombroek (1986) 
emphasized the need for common methodologies, and launched the 'five-step' 
approach, discussed below. 
The Programme can also lead to the strengthening of research centres and devel­
opment in the tropical countries concerned, through assistance and participation 
in an international network. 
On the one hand, there is a suggested framework of consecutive steps to be taken 
at the level of locational research while, on the other hand there are aspects inherent 
to the networking concept. 
The following 'five-step' approach of research and planning has been proposed for 
all Tropenbos locations. 

Step 1 

Identification of a representative area and broad inventory of its resources. 

Step2 

Aggregation of the inventory data and their qualitative evaluation, delineation of 
major land units and selection of sites for further detailed studies. 
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Step3 

Detailed quantitative investigation of ecological characteristics, potentials and 
regulatory processes at the selected sites. 
This step would consist of subjects such as forest structure, animal behaviour, growth 
and yield, natural regeneration, entomology, species diversity, biomass and organic 
matter, nutrient and moisture cycles, and forms of degradation. 

Step4 

Quantitative studies on human activities and needs, in relation to alternative forms 
of land use and aggregation of data into a characterization of land use systems. 

Steps 

Integration of all information into a quantitative multi-purpose land evaluation, and 
the design of suitable options for the management of the main forest land units. 

The present study deals mainly with Step 3 of the 'five-step' approach, and tries to 
fulfil the networking requirements of the common methodologies mentioned above. 
It is not a description of sampling and analytical procedures. For such i nformation 
Tropenbos makes use of the handbook by Anderson and Ingram (1989). 

Any management strategy for sustained land use of former or present tropical forest 
areas must be based on an understanding of the interactions between climate, 
vegetation and soil. To acquire such an understanding, the researcher may greatly 
benefit from mode ling approaches, as was outlined by the Tropenbos Working 
Group on Nutrient and Moisture Cycling (Van Breemen, 1988). 

When designing models, it clearly comes to light what information is still missing. 
On the other hand, in models maximum advantage is taken of the information 
available. Moreover, by sensitivity analysis models can indicate which parameters 
and processes are of vital importance, and thus worthwhile to study. In this way 
models assist in strategic planning of research activities. One step further is the use 
of models for (management) scenario analyses. Some examples are calculation of 
the effects of different timber felling regimes, the effects of different lengths of crop 
cultivation and fallow periods in shifting-cultivation systems, and the effects of 
burning. The ultimate goal of our efforts in modeling nutrient and moisture cycling 
is to make such long-term analyses possible. 

The model resulting from the present study originated from the model NUTCYC, 
described in detail by Noij (1988) and summarized by Noij et al. (1988). In NUTCYC, 
the availability of phosphorus is taken as the driving force for plant growth. This 
choice was based on results obtained in the Tai region in Cote d' Ivoire (Van Reuler 
& Janssen, 1988; 1989). The literature review in Part II, Section 1.2, of the present 
report confirms that phosphorus often is a major growth-limiting factor. This is 
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certainly the case in Sarawak, as shown by Staritsky (1988), who applied NUTCYC 
to the data gathered in a monitoring project on nutrient cycling by Andriesse (1987). 
It goes too far, however, to proclaim phosphorus-limited growth to universal rule 
for tropical forests. On sandy soils, cations like calcium may be growth limiting as 
well (Part II, Section 1.2 of this report), whereas in montane forests nitrogen may 
be critical (Jordan, 1985). In humid tropics, scarcity of nutrients generally is the 
main growth-regulating factor. But even in areas with abundant rainfall, plant 
growth might be reduced by moisture deficiency during dry spells. 

These facts made it necessary to modify NUTCYC in such a way that shortage of 
other nutrients than phosphorus, periodical droughts and water logging can be taken 
into account. Another important advantage of the present model is that it calculates 
leaf-fall rate and nutrient concentrations in plant components in a dynamic way, 
while in NUTCYC these factors were fixed input data. 

Introducing the moisture regime in the model meant that the time step of one year 
as used in NUTCYC could not be maintained. In the present model the time step 
may vary from two weeks to one year, according to the requirements ordained by 
the prevailing environmental conditions and the availability of data. The model 
calculates for each time step which factor is most limiting, and is therefore the 
driving force for plant growth during that time step. It is important to note that 
solar radiation is not dealt with in our model, in contrast to the simulation model 
by Mohren (1987) for temperate regions. Approximate calculations have indicated 
that in the tropics solar radiation may under certain conditions be more limiting 
than moisture or nutrients. Such conditions occur only a few days per year and are 
therefore of minor importance. Inclusion of potential dry-matter production would 
greatly extend and complicate the model, making it impossible to finish the project 
within the time schedule foreseen. 

Models are simplifications of reality. This is certainly true when complicated systems 
like tropical forests are the subject of modeling. As main output the present model 
delivers the biomass of leaves, stems and roots for a forest vegetation as a whole at 
any time, but it leaves out the distribution of biomass among species. Biomass is 
calculated for a particular site with a given set of soil and climate characteristics 
(point analysis). Not yet considered are multi-dimensional systems such as topo­
sequences and watersheds. Restrictions were also necessary with regard to the 
number of soil layers and nutritive elements. In Section 4 it is indicated how the 
model can be extented to improve its applicability, and what field measurements 
should be done for both testing and feeding the model. 

The model is called DYNAMITE, which stands for DYnamics of Nutrients And 
Moisture In Tropical Ecosystems. 

17 



2 MODEL STRUCTURE 

2.1 State variables 

In the model, the forest ecosystem is subdivided into three main compartments 
(Fig. I.1): 

vegetation, consisting of leaves, wood, coarse roots, fine roots; 
forest floor, subdivided into leaf litter and wood litter; 
soil, consisting of one or more soil layers. 

For the calculation of water flows, usually the soil profile is subdivided into more 
layers than for the calculation of nutrient flows. In the present version of the model, 
these numbers are two and one, respectively, but this can be modified. The soil 
layer distinguished for the calculation of nutrient flows contains organic and inor­
ganic components. The organic component consists of fine-root debris, coarse-root 
debris, organic labile pool, organic moderately labile pool, organic stable pool. The 
inorganic component consists of inorganic labile pool, inorganic stable pool, inor­
ganic inert pool. Each pool may contain one or more elements. In the present version 
of the model these are N, P, K and C. The model also distinguishes a soil solution, 
which for the upper soil layer must be interpreted as the total amount of water 
present in the forest floor and the upper soil layer. Plants can take u p  nutrients 
from the soil solution only. 

2.2 Fluxes 

2.2.1 Water 

Water enters the ecosystem via rainfall, and leaves it via evaporation, transpiration 
and percolation. Part of the precipitation is intercepted by the vegetation and 
evaporates. The remaining part (throughfall) reaches the soil and infiltrates into 
the upper soil layer. 
From the water that has entered the upper soil layer part is used for direct eva­
poration and another part for transpiration by plants. What remains is stored in the 
soil layer. If the water content exceeds field capacity, percolation to the second layer 
takes place. If the infiltration into a soil layer exceeds the maximum storage, per­
colation and transpiration, back-flow of water to higher soil layers is calculated. 
Back-flow from the first layer is calculated as surface storage. This water can enter 
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the soil during the next time step. Thus it is assumed that no runoff occurs. If the 
water content becomes less than field capacity, capillary rise is calculated. Distri­
bution of uptake of moisture from the various layers is fixed. 

2.2.2 Nutr ients 

The nutrients nitrogen, phosphorus and potassium are considered. Besides, carbon 
is taken into account as the main constituent of living and dead organic components. 
In the model, nutrients enter the ecosystem via dry (phosphorus and potassium) 
and wet (nitrogen and potassium) deposition. Carbon enters the system via the 
process of photosynthesis. This process is not explicitly simulated. The amount of 
carbon follows from growth vegetation (Section 2.2.2.5). Input of nitrogen by 
microbiological fixation of N2 has not yet explicitly been included in the model. 
Time was not available to model this process. 

Nutrients leave the ecosystem by leaching and erosion, while carbon disappears as 
C02 due to dissimilation of dead organic components (Section 2.2.2.2). Losses of 
C02 by respiration and gaseous losses of nitrogen by denitrification and ammonia 
volatilization are not explicitly dealt with. 

Nutrient flows to and from the various pools within the ecosystem result from and 
result in transformations of these pools. To keep the entire complex of nutrient 
flows within the ecosystem surveyable, the following distinction is made: 

transformations of the inorganic pools; 
transformations of the organic pools; 
nutrient flows to and from the solution; 
uptake and distribution of nutrients by and in the vegetation. 

Nutrient flows and vegetation growth are discussed in the following subsections. 

2.2.2.1 Transformations of inorganic pools 

Phosphor us 

The inorganic pools for phosphorus are the inert, stable and labile pools (Fig. I.1). 
It is assumed that the inorganic inert pool does not weather. The only of this pool 
are input by dry deposition and loss by erosion. 

The inorganic stable pool increases by dry deposition and by transformation of labile 
into stable phosphorus, and decreases by erosion and by transformation of stable 
into labile phosphorus. There is no direct flow from inorganic stable phosphorus 
to the solution. 
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Fig. I.1 &hematic representation of the processes incorporated in the model DYNAMITE. The 
numbers refer to: 

1 plant nutrient uptake from soil solution (SSOL) 

2 nutrient uptake in fine roots (FR) 
3 nutrient transport from fine roots to leaves (LEAF) 
4 nutrient transition from fine to coarse roots (CR) 

5 nutrient overflow from leaves to wood 
6 nutrient retranslocation from leaves to wood 
7 leaf fall 

8 wood fall 
9 coarse-root dying 
10 fine-root sloughing 

11 K leaching from forest-floor leaves (FFL) 
12 nutrient transfer from forest-floor leaves to organic labile pool (ORIA) 
13 nutrient transfer from forest-floor wood (FFW) to organic labile pool 

14 nutrient transfer from forest-floor wood to organic moderately labile pool 
(ORML) 

15 nutrient transfer from coarse-root debris (CRD) to organic labile pool 

16 nutrient transfer from coarse-root debris to organic moderately labile pool 
17 nutrient transfer from fine-root debris (FRD) to organic labile pool 
18 nutrient transfer from organic labile to organic moderately labile pool 
19 nutrient transfer from organic moderately labile to organic stable pool 

(ORSI') 
20 mineralization of forest floor leaves 
21 mineralization of forest floor wood 
22 mineralization of coarse-root debris 
23 mineralization of fine-root debris 

24 mineralization of organic labile pool 
25 mineralization of organic moderately labile pool 
26 mineralization of organic stable pool 

27 wet deposition of N and K 
28 total dry deposition of P 
29 dry deposition of P to inorganic stable phosphorus (INSfP) 

30 dry deposition of P to inorganic inert phosphorus (ININP) 
31 transfer of P from inorganic stable to inorganic labile phosphorus (INLAP) 
32 transfer of P from inorganic labile to inorganic stable phosphorus 
33 transfer of P from inorganic labile pool to soil solution 
34 desorption and adsorption of K 
35 leaching of nutrients from soil solution (SSOL) 

36 erosion of organic and inorganic nutrient pools 

The inorganic labile pool increases by transformation of inorganic stable into 
inorganic labile phosphorus, and decreases by erosion, transformation of inorganic 
labile into inorganic stable phosphorus, and by dissolution. 

Potassium 
Two pools are distinghuished, namely exchangeable potassium (labile) and potas­
sium containing minerals (stable). The labile pool increases by adsorption of 
potassium from the solution, and decreases by erosion and by desorption of adsorbed 
potassium. The stable pool decreases by weathering and increases by dry deposition. 
These processes are not explicitly modeled. Weathering is introduced as input 
parameter. It is assumed that dry deposition equals weathering. 
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2.2.2.2 Transformations of organic pools 

A distinction can be made between primary and other organic pools. The primary 
pools are leaf litter and wood litter in the forest floor, and fine-root debris and 
coarse-root debris in the soil. These primary pools are fed by the corresponding 
vegetation components. The organic materials in the primary pools are subjected 
to conversion during one year. Of the woody pools only a fraction is susceptible to 
conversion. The conversion rates depend on temperature and chemical composition 
of the materials, which is characterized by their 'initial age' (Janssen, 1984). After 
a year the residues are transferred partly to the organic labile and partly to the 
organic moderately labile pool. The residence time in these pools is again one year, 
during which conversion continues but the rates are lower than for the primary 
pools. The residues of the organic labile pool are transferred to the organic 
moderately labile pool, and the residues of the organic moderately labile pool are 
transferred to the organic stable pool. The organic stable pool is converted at a still 
lower rate than the organic moderately labile pool. 

The conversions of organic matter (carbon) consist of dissimilation and assimilation. 
By dissimilation organic matter is converted into H20 and C02. By assimilation 
organic matter is converted into microbial tissue and this remains in the pool during 
the time step under consideration. 

The conversions of organic nitrogen and phosphorus are related to the conversion 
of carbon. The assimilation of organic nitrogen and phosphorus by micro-organisms 
is proportional to the carbon assimilation. Those parts of converted organic nitrogen 
and phosphorus which are not assimilated in microbial tissue are mineralized, that 
is, added to the solution. If the C-N or C-P ratios of the organic pool exceed about 
25 or 300, respectively, the mineralization is negative. In those cases some nitrogen 
or phosphorus is taken up by the microbes from the solution (immobilization). 

Potassium is present only in the primary organic pools. A part of it leaches 
immediately from these pools to the solution, another part is gradually released 
during conversion, and the residues go directly to the solution. Thus there is no flow 
of potassium from the primary to the older organic pools. 

All organic pools are prone to erosion, but their erosion rates may differ conside­
rably. Of the woody primary organic pools yearly only the fraction that is susceptible 
to conversion is susceptible to erosion. 

2.2.2.3 Nutrient flows to and from the solution 

The soil solution is considered as a continuously stirred reactor. A number of 
simultaneous or sequential processes take place within each time step. 
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Processes by which the solution receives nutrients are: 
- mineralization of nitrogen and phosphorus from the organic pools; 
- atmospheric deposition of nitrogen and potassium; 
- release from inorganic labile phosphorus; 
- leaching and release of potassium from the primary organic pools; 
- desorption of absorbed potassium. 

Processes by which the nutrients leave the solution are: 
- immobilization of nitrogen and phosphorus by the organic pools with a high C-N 

or C-P ratio; 
- uptake by the vegetation; 
- adsorption of potassium; 
- leaching in case water percolates to the next deeper soil layer. 

It is assumed that the plants are unable to take up nitrogen and phosphorus when 
the concentrations of these nutrients are below certain threshold values. The con­
centration of potassium follows from equilibrium with the exchange complex at the 
end of a time step. 

2.2.2.4 Uptake of nutrients by and distribution in the vegetation 

Only the nutrient with the highest uptake-supply ratio (Part II, Section 4) is com­
pletely used by the plant, taking into account the threshold concentrations for 
nitrogen and phosphorus. The uptake of the other nutrients is calculated as a 
function of the ratios of nutrient concentrations in the solution. 

After the nutrients have been taken up, they must be allocated to the various plant 
components. A fraction of the absorbed nutrients is withheld in the fine roots. The 
remainder goes to the leaves. The absorbed quantity of a nutrient is calculated as 
a function of the available amount of that nutrient, regarding the possible maximum 
and minimum contents of the nutrient as boundary conditions. Nutrients not used 
by the leaves, if any, are available for wood growth. The wood receives nutrients 
mainly by translocation of nutrients from leaves shortly before they fall. Hence, 
shed leaves have a lower nutrient content than living leaves. Coarse roots receive 
nutrients via transformation of fine into coarse roots. 

2.2.2.5 Growth 

Growth is expressed as the increase in dry-matter mass of each plant component, 
per time step. Implicitly it is assumed that leaf growth is a result of photosynthesis, 
and that the growth of the other plant components is made possible by translocation 
and conversion of assimilates from the leaves to the other plant parts. Growth is 
the process by which carbon enters the ecosystem. The procedure for calculation 
of leaf growth is too complicated to summarize in a few sentences. The reader is 
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referred to Part III, Section 3.4.3.2. The growth rate of leaves has a maximum that 
equals the quotient of the actual transpiration during that time step and the 
transpiration ratio. 

For the other plant components the growth is calculated per time step as the ratio 
of the incoming quantity of the most limiting nutrient and the expected concentration 
of that nutrient. The expected nutrient concentrations for roots, stems and branches 
are related to the nutrient content in the leaves. (Part II, Section 5). 

During each time step, fractions of the biomass of leaves, stems and branches, and 
coarse roots die and go to leaf litter, wood litter and coarse-roots debris (Fig. I.1). 
Fine roots loose a part of their mass by sloughing and another part by transformation 
into coarse roots. 
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3. REQUIRED DATA

To run the model a considerable number of data are required. It is often impossible 
to obtain these data. In such situations one has to rely on standard values and (pedo-) 
transfer functions. 

3.1 Required climatological data 

Rainfall 

Usually, monthly rainfall over a number of years is used. Depending on the time 
step, daily data may be needed to calculate rainfall intensity. If only monthly 
(averaged) data are available, rainfall distribution must be generated (Van Diepen 
et al., 1988). 

Pan evapor ation 

Also here monthly figures are used. Pan evaporation is translated into potential 
evapotranspiration by multiplying it with a 'crop factor'. For tropical forests the 
crop factor is calculated according to Poels (1987). 

Temper atur e 

For the calculation of conversion rates of organic pools, the average annual tem­
perature must be known. In principle, it would be better to calculate conversion 
rates as a function of temperature, separately for each time step. This would require 
a tremendous quantity of calculation time. For tropical areas, where temperature 
hardly fluctuates from season to season, it is justified to use one value for tempe­
rature throughout the year. 

3.2 Required litter data 

3.2.1 Rates 

Conver sion r ates 

The assessment of conversion rates is based on the following equation from Janssen 
(1984, 1986): 

Yt/Yo = exp { 4.7 [(a + f1 · t)-0.6 -a 0.6]} [I. l] 
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where: 
the amount of organic material remaining at time t 
the initial amount of organic material 

Yt 
Yo 
a 'initial age' (years) of the organic matter; this can be considered as an index 

positively related to the resistance of the organic material against microbial 
conversion 

ft = temperature correction factor 
t time in years 

Ifa and ft are known, the average dissimilation constant (Ca is) over any time interval, 
L>t, can be calculated by: Cais = (1 I Lit) · In Y t I Yet."' l . Standard values of the 
'initial age' are set at 2.18 for leaves, and 4.0 for wood. Depending on the resistance 
to conversion, higher or lower values for a can be applied. 
The value of ft can be found by 

ft = 2 (f-9)/9 [I.2] 

where T = temperature in °c. 
For T = 27°C, f1 = 4; this is the value that can be used in many tropical forests. 
Under extreme conditions like waterlogging, drought, and very acid soils, dissimi­
lation rates will probably be lower than calculated above. Corrections might be 
made by introducing more correction factors, e.g., fm, correction for moisture 
content, and fa, correction for acidity. So far, values for fm and fa have not been 
calibrated, and therefore these correction factors are not yet used in DYNAMITE. 

Litter r emoval r ates 

It is assumed that only a fraction of dead wood and coarse roots is susceptible to 
conversion and to erosion in one year. For the Tai' region and for Sarawak the value 
of the mean residence time was estimated at 15 years; this figure was derived from 
a study by Vooren (1985). For Sarawak, it proved necessary to assume that leaf 
litter too, has a mean residence time of more than one year; it was set at 3 years. 
In most cases, however, the mean residence time may be set at 1.0 year. 

Miner alization of nitr ogen and phosphor us 

For the calculation of nitrogen and phosphorus mineralization, a method developed 
by Janssen and Noij (1993) has been incorporated in the model. Required data are: 
- dissimilation-assimilation ratio for the conversion of organic materials; standard 

value is set at 2. 
- C-N ratio of the micro-organisms which are involved in the conversion; standard 

value is set at 8.5. 
- C-P ratio of these micro-organisms; standard value is set at 100. 
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Release of potassium 

A fraction of potassium present in freshly fallen leaves is immediately leached; its 
value is set at 0.5. 

3.2.2 State var iables 

Leaf litter 

The initial quantities of organic matter, nitrogen, phosphorus and potassium are 
required as input data. If these data are not available, they can be estimated as a 
function of leaf mass, leaf fall rate and redistribution fractions, and conversion rates 
(Noij, 1988, p. 61). 

Wood litter 

Wood litter comprises both fallen and standing dead trees. Their quantity may be 
estimated by multiplying the number of such trees with their average mass. Also 
the quantity of fallen branches and twigs must be included in wood litter. 

3.3 Required soil data 

3.3.1 Gener al 

The number as well as the thickness of the soil layers must be known. The values 
may be different for the hydrological and the chemical (nutrient) part of the model. 

Bulk d ensity 

For each soil layer the bulk density should be known to be able to translate data 
given per kg of soil into data per unit of volume (layer thickness times area). 

3.3.2 Hyd r ological d ata 

Maximum r ate of capillary r ise 

If no data are available, they may be found by intra- or extrapolation of the data 
presented in Table III.1. 

Water r etention char acter istics 

Required are the volume fractions of moisture when the soil is: 
- air dry; 
- at permanent wilting point; 
- at field capacity; 
- at saturation. 
Further it must be known at which volume fraction of air oxygen stress starts (Part 
III, Section 3.1.7) 
If such data were not measured, they should be estimated from soil-texture analyses. 
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3.3.3 Chemical d ata 

3.3.3.1 Rates 

Wet d eposition 

The rates of wet deposition (nitrogen and potassium) can be calculated as the 
product of rainfall per time step and the concentration in rainfall. If such concen­
trations are not known they should be estimated from literature data (e.g., Poels, 
1987). 

Dry d eposition 

Data on dry deposition rate and on chemical composition of deposited materials 
are still harder to obtain than those on wet deposition. They must be estimated on 
the basis of existing literature and by common-sense interpolation (Stoorvogel, 
1992). For the division of the dry deposition of inorganic phosphorus between inert 
and stable phosphorus, see below under 'Transformation of inorganic phosphorus' 
and Section 3.3.3.2 under 'Inorganic phosphorus'. 

Er osion 

Eroded materials often are relatively rich in organic matter, thus it can be concluded 
that relative erosion rates of organic pools are often higher than those of inorganic 
pools. Erosion under forest has seldom be measured. Values for relative erosion 
rate might be estimated from a range from zero to 0.002/year; of course they apply 
only to the upper soil layer. 

Tr ansfor mation of inor ganic phosphor us 

Inorganic inert phosphorus does not change by nature; it is assumed that the dry 
deposition equals the erosion of inorganic inert phosphorus. Values for the trans­
formation fractions of inorganic labile and inorganic stable phosphorus are, for the 
time being, derived from Wolf et al. (1987) and Janssen et al. (1987). They are: 

inorganic labile to solution 
inorganic labile to inorganic stable 
inorganic stable to inorganic labile 

Tr ansfor mation r ates of potassium 

0.1/year 
0.2/year 
0.033/year. 

It is assumed that the following relationship exists between potassium in the solution 
(SSOLK) and exchangeable potassium (ADSK.], both in kg ha-1: 

[I.3] 
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where Kct is the adsorption constant; at present its value is set at 100. 
This is a preliminary equation that can be applied as long as potassium is the only 
exchangeable cation considered in the model. 
For the transformation of non-exchangeable (stable) potassium, so far no equations 
have been developed. For the time being, it is assumed that per hectare 20 kg of 
potassium are brought into the solution annually by weathering, and that an equal 
amount goes to the stable pool by dry atmospheric deposition. 

Conver sion r ates of or ganic pools 

The same formula applies as used for the calculation of the conversion rates of 
wood and leaf litter. The initial ages of the soil organic pools are set at: 
- fine-root debris 2.18 year 
- coarse-root debris 4.0 year 
- labile organic pool 6.18 year ( = age leaf litter + ft) 
- moderately organic pool 10.18 year ( = age wood litter + f1) 
The relative dissimilation rate of the organic stable pool is found for a steady-state 
situation by solving the equation: 

Jtra,ORM:L = ORST (1 - exp (-Cdis,oRST/n)) [I .4] 

where: 
= the dissimilation constant of organic stable pool (ORST) Cdis,ORST 

Jtra,ORML 
n 

= rate of transfer from organic moderately labile to organic stable pool 
= number of time steps per year 

Mineralization of nitrogen and phosphorus from the soil organic pools is calculated 
in the same way as for litter (Section 3.2.1), and hence no other data are required. 

3.3.3.2 State variables 

Or ganic car bon content 

Soil organic carbon is present in three pools. It is not feasible, however, to measure 
individual pools. The magnitudes of the organic labile and the organic moderately 
labile pools follow from the sizes and conversion rates of the primary organic pools: 
leaf and wood litter, fine-root and coarse-root debris. Hence, the sizes of the organic 
labile and organic moderately labile pools can be found by running the model. To 
start such runs, as a first approximation it can be assumed that carbon is present in 
the organic labile, moderately labile and stable pools in proportions of 2 : 3 : 95. 

Or ganic nitr ogen content 

Soil organic nitrogen is likewise present in three pools which cannot be measured 
individually. The distribution of organic nitrogen may be set at 1.5: 2 :  96.5. It differs 
from the distribution of organic carbon because the pools differ in C-N ratios. These 
are approximately 17.3, 19.5 and 12.8 for the organic labile, moderately labile and 
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stable pool, respectively, if the C-N ratio of total soil organic matter is set at 13. 
These values for C-N ratio can be used if soil organic nitrogen has not been analyzed. 
After running the model, final estimates for the distribution of soil organic nitrogen 
among the three pools can be made. 

Organic phosphor us content 

For soil organic phosphorus the same difficulties are met as for soil organic carbon 
and nitrogen. An additional problem is that values of soil organic phosphorus are 
rare, because the analytical procedure is more laborious and complicated than those 
for organic carbon and nitrogen. If no data are available, it is suggested to estimate 
soil organic phosphorus as a fraction of total P (range 0.3-0.7) and as the quotient 
of soil organic carbon and the C-P ratio (range for C-P ratio in tropical forest soils: 
100-500). The ranges for soil organic phosphorus found with the two methods usually 
overlap; the middle of the overlap might be considered as the best estimate for soil 
organic phosphorus. 

Inor ganic phosphor us 

Soil inorganic phosphorus is seldom determined and usually has to be estimated as 
the difference between total soil phosphorus and (the estimate for) soil organic 
phosphorus. The individual pools of inorganic labile (INLAP), stable (INSTP) and 
inert (ININP) phosphorus cannot be measured. They can be calculated for a steady 
state situation provided the rate of deposition of inorganic phosphorus, and the 
erosion and the transformation fractions of the inorganic pools are known. Depo­
sition of inorganic inert phosphorus is then equal to the erosion of this pool. For 
the time being the values for the transformation fractions are derived from Wolf et 
al. (1987) and Janssen et al. (1987). Further the sum of the inorganic phosphorus 
pools must equal total inorganic phosphorus. 

Using the values given in Section 3.3.3.1, the following equations can be derived for 
a time step of one year: 

0.1 · INLAP + 0.2 · INLAP + FER1NIAP · INLAP = 0.033 · INSTP

0.033 · INSTP - FERrNsrP INSTP = 0.2 · INLAP + ARDEPp -

FERrNINP · ININP

INLAP + INSTP + ININP = TINP 

where: 
FER1NIAP = erosion fraction of INLAP per time step 
FER1NSfP = erosion fraction of INSTP per time step 
FER1NINP = erosion fraction of ININP per time step 
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ARDEPp = annual rate of deposition of P (kg/ha per yr) 
T INP = total inorganic P (kg/ha) 

With these three equations, the values for the three unknown inorganic pools can 
be found, if FER1NLAP, FER1NSTP• FER1NINP• ARDEPp and TINP are known. 

3.4 Required vegetation data 

Relative r ate of wood fall 

This rate is given as a liner interpolation (AFGEN) function (Noij, 1988), p. 57, 59, 
60). See Part III, Section 4. Original data were derived from Jaffre (1985), Jaffre 
& de Namur (1983) and Vooren (1985). 

Relative r ates of coar se-r oot and fine-r oot tur nover 

For the time being, for coarse roots this rate is arbitrarely set at two times the 
relative rate of wood fall, and for fine roots at 1.0 /yr. No suited data were available 
(Part II, Section II) . 

Tr anspir ation r atio 

This is the ratio of transpired moisture and dry matter produced at moisture stress. 
If no appropriate data are available, its value is set at 300 kg/kg. 

No other input data on rates in the vegetation are required, because all rates are 
calculated as functions availability of nutrients in the solution and the nutritional 
status of the vegetation. For this purpose, equations have been derived from lit­
erature discussed in Part II of this report. 

Vegetation growth follows from model calculations. Hence, in principle no input 
data are required on biomass and nutrient contents of various vegetation compo­
nents. The initial situation, however, should be described. If vegetation growth is 
simulated starting from bare soil, a certain minimum stand of the vegetation must 
be given. For this purpose, the values presented in Table I.1 can be used. If one 
wants to run the model starting from a standing vegetation, values for the variables 
mentioned in Table I.1 should be determined or estimated. 

Table I.1 Initial values for biomass (dry matter) and nutrient contents of various components of a 
starting vegetation. All data are in kg per ha 

Component Biomass N p K 

Fine roots 100 1.0 0.15 1.0 
Coarse roots 10 0.08 0.01 0.06 
Wood 100 0.8 0.1 0.6 
Leaves 100 2.5 0.3 2.0 
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4 EVALUATION 

As mentioned in the introduction of this report, models serve to 
- integrate the existing knowledge; 
- improve the understanding of the functioning of the modeled ecosystem; 
- indicate blank spots in our knowledge; 
- assist in the planning of field research; 
- predict the effects of (management) scenarios. 

How is the performance of the present model? Before answering this question, it 
must be observed that DYNAMITE is still in development. These reports should 
therefore be considered as an account on the present state of the art. 

4.1 Integration of existing knowledge 

The existing knowledge might be distinguished into knowledge that has already 
been integrated in models, and knowledge that is scattered in reports, books and 
articles and not yet brought together in an assembly of operative calculation pro­
cedures. 

Knowledge of the first type was exploited by incorporating (parts of) the following 
models: 

ILWAS 

WATERSTOF 
SWATRE 

WOFOST 

RESP 
QUEFTS 

MINNIP 

NUTCYC 

Integrated Lake Watershed Acidification Study (Goldstein et al., 
1984), including modifications made by Van Grinsven (1988); 
Simulation of WATER and STOF (Wesselink, 1988); 
Soil Water Actual Transpiration Rate Extended (Belmans et al., 
1983; Feddes et al., 1978); 
World Food Studies: crop growth simulation model (Van Diepen 
et al., 1988; Van Keulen and Wolf, 1986); 
RESidual effect of Phosphorus fertilizers (Wolf et al., 1987); 
Q U antitative Evaluation of the Fertility of Tropical Soils (Janssen 
et al., 1990); 
MINeralization of Nitrogen and Phosphorus (Janssen and Noij, 
1993, Janssen 1984, 1986); 
NUtrient CYCiing (Noij, 1988). 
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So far, most satisfying in DYNAMITE proved the calculation of the hydrological 
cycle, derived from ILWAS, WATERSTOF and SWATRE, and that of organic­
matter decomposition and nitrogen and phosphorus mineralization, derived from 
MINNIP and NUTCYC. DYNAMITE deals with inorganic chemical processes still 
in a provisional way. Weathering processes have not yet been elaborated because 
of lack of time, but it is expected that IL WAS might provide useful techniques. 
Inorganic phosphorus reactions were described according to RESP. As this model 
has a time step of a year, its procedure is considered too crude for DYNAMITE. 

Major difficulties were met with the vegetation compartment, especially with the 
distribution of nutrients among and the growth and dying of the different plant 
components. Some principles of WOFOST and QUEFTS could be used. A great 
portion of this part of the model, however, had to be newly devised, after a thorough 
examination of literature data (see Part II). 

4.2 Improvement of understanding 

Both models, NUTCYC and DYNAMITE, are suited to show how the growth of 
forest vegetation and the chances for substainable landuse are affected by 
- dry and wet deposition; 
- leaching of nutrients; 
- (selective) erosion; 
- sizes of nutrient pools in the soil; 
- rates of decomposition and mineralization of organic pools; 
- immobilization of nutrients during decomposition of woody materials; 
- rates of wood and leaf fall; 
- retranslocation (redistribution) of nutrients from leaves to wood. 

The sensitivity of wood growth to some of these effects was demonstrated by Noij 
et al. (1988). 

The surplus value of DYNAMITE above NUTCYC is that DYNAMITE set forth 
also: 
- the interactions between moisture and nutrients and thus the effects of dry and 

wet spells and seasonallity in general on nutrient cycling; 
- the interrelations among nutrients and thus the effects of e.g. balanced and 

unbalanced plant nutrition; 
- the distribution of nutrients among above- and below-ground plant components 

and thus the effects of soil fertility on shoot-root ratios and on the ratio of fine 
to coarse roots; 

- the effects of moisture and nutrient stress on the life span of leaves and thus on 
the rate of nutrient cycling; 
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- the effects of nutrient stress on nutrient-conservation mechanisms in the vege­
tation, such as retranslocation. 

4.3 Indication of missing knowledge 

It is general experience that during the development of a model questions arise that 
cannot be answered. The more sophisticated a model is, the more questions remain 
unanswered and the higher the number of'guestimates' the modeler has to reconcile 
himself to. It is difficult to find universally applicable data, because the living 
community of a tropical forest, inclusive soil and litter fauna and microflora, proves 
unimaginably flexible and pliant in facing and circumventing adverse situations. 

It does not make sense to exhaustively list the problems encountered. Some major 
questions were: 
- the fraction of litter that is decomposed above ground and the fraction that is 

brought into the soil by animals or by leaching; 
the fraction of fallen and standing dead stems that is susceptible to decomposition 
and erosion; 
turnover rates of fine and coarse roots; 
dying rate of trees; 
the simultaneous occurrence or sequence of processes related to nutrients in the 
soil solution: microbial assimilation, uptake by the vegetation, adsorption and 
desorption, precipitation and dissolution, leaching; 
threshold nutrient concentrations in soil solution for uptake by vegetation; 
relation between nutrient ratios in soil solution and ratios of nutrients taken up 
by the vegetation; 
distribution of nutrients among plant components. 

With respect to input data, it is often difficult to find reliable figures for: 
- dry and wet deposition; 

rates of (selective) erosion; 
rates of mineral weathering; 
C-N and C-P ratios of micro-organisms; 
organic phosphorus content in the soil; 
contents of potassium in minerals. 

Not yet considered in DYNAMITE are processes like: 
- microbiological nitrogen fixation; 
- leaking of nutrients from tree leaves; 
- effects of pH and aluminum; 
- denitrification and ammonia volatilization. 
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Relative erosion rates are at present input variables. It should be tried to relate 
them to weather (peak discharge) and physical soil data, so that it can become at 
output variable of the model. 

4.4 Priorities in field research 

The list of insufficiently known factors given in the preceding section points out for 
which topics field research would be required. Unfortunately, many of the men­
tioned items are difficult to measure, and that is of course the main reason why they 
have so seldom been assessed until now. 

Not all questions, however, are equally important. Sensitivity analysis may be carried 
out to study the effects of variations for a number of variables. Often the interactions 
between some factors are more important than the effects of the factors individually. 
For instance, a low water-holding capacity of the soil is less a problem when rainfall 
is evenly distributed than when it is erratic. 

It appeared (Noij et al., 1988) that for a given setting of climate, soil and vegetation 
characteristics, wood growth is very sensitive to the rates of atmospheric deposition 
and (selective) erosion, and to retranslocation of nutrients in the vegetation. On 
short term the initial size of soil state variables like phosphorus content is important, 
but on long term erosion and atmospheric deposition have much more effect. 

From these results it can be concluded that, as far as field studies are concerned, 
priority should be given to the determination of dry and wet deposition of nutrients, 
erosion especially litter erosion, retranslocation of nutrients or generally nutrient 
conservation mechanisms in the vegetation. The establishment of C-P and C-N 
ratios in micro-organisms and the relationships between the ratios of nutrients in 
the solution and those of nutrients taken up, under different conditions, deserve 
first attention in laboratory and phytotron or greenhouse studies. Such studies 
should be preceded by a further scrutiny of literature. 

Technically very difficult will be studies on root productivity and turnover, and 
distribution of nutrients among plant components. Nevertheless it is worthwhile to 
continue literature studies on these subjects, or to start such experiments if literature 
does not provide satisfying outcomes. 

Further research is also required to find out when soil moisture content becomes 
critical for the uptake of the different nutrients, either by shortage of oxygen (wet 
soils) or in dry soils by increased tortuosity of the pathways the nutrients have to 
go to reach the roots. In the present version of the model, it is assumed that these 
moisture contents are the same as those for the reduction in water uptake. This 
simplication, however, is likely not justified. 
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4.5 Use of the model for prognostic purposes 

Before the model is used as an instrument to predict the effects brought about by 
different management scenarios or different environmental conditions, it should 
first be validated by testing it in the field. This testing, however, is a complicated 
enterprise of long duration, because it requires at least repeated estimating of forest 
biomass over an extented period of time. In the ideal case, subroutines of the model 
are tested separately, but in practice this will usually remain a pious wish. The water 
balance as calculated with the present model was compared with data obtained by 
Poels (1987) in Suriname. The performance of this part of the model was very 
encouraging (Part III, Section 5.2). 

Where testing is not possible or has not been done, it might yet make sense to run 
the model to investigate in what direction changes in management or environmental 
conditions will affect the growth of the vegetation. Examples of subjects that could 
be examined are: 
- frequency of timber harvesting; 
- shifting-cultivation intensity; 
- the effect of gravel in the soil profile, for varying lengths of drought periods, on 

vegetation growth; 
- the effect of peak discharges on nutrient output from the system and on vegetation 

growth. 

Results of such studies without prior testing of the model are qualitative rather than 
quantitative, and should be interpreted with caution. 
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5 CONCLUSION 

The model DYNAMITE is a tool to arrive at a better understanding of moisture 
and nutrient cycling in tropical forest lands. It should not be considered, however, 
as a final product. Testing the model in the field may result in considerable 
improvements. The authors hope that such field tests can be conducted at various 
sites of the Tropenbos Programme. 

It is expected that DYNAMITE and its possible successors can make a substantial 
contribution to the design of effective measures for sustainable use of forest lands 
in the humid tropics. 
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PART II 

NUTRIENTS AND PLANT GROWTH IN TROPICAL FORESTS 

Literature study 
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1 INTRODUCTION 

1.1 Outline of the study

The purpose of this literature study is to gather data on ecophysiological rela­
tionships in tropical forests, and to interpret them for the purpose of modeling. The 

emphasis is on nutrients, and on aspects which had not or only provisionally been 
dealt with in the preceeding model NUTCYC. 

The most important presupposition for the present model DYNAMITE is that the 
growth of humid tropical forests is mainly determined by the availability of nutrients. 

In Section 1.2 it is examined whether this presupposition is justified. 

The uptake and distribution of nutrients strongly influence the production and 

distribution of dry matter in plants, and vice-versa. Therefore, it was necessary to 

study root production and turnover (Section 2) and dry-matter production and 
distribution in the above-ground parts of forest vegetations (Section 3). 

The uptake of nutrients is a result of supply and demand. The quantities of nutrients 

which are supplied by the soil are not necessarily in balance with the demand of the 
plant, and hence the ratios of the absorbed nutrients often deviate from the ratios 
of the supplied nutrients. In Section 4, equations are derived for the calculation of 
the uptake of nutrients as a function of nutrient supply. 

After the nutrients have been taken up, they must be distributed among roots, leaves, 
branches and stems. The procedure for nutrient distribution within plants is des­
cribed in Section 5. It is based on the findings on dry-matter distribution discussed 

in Section 3 and on the relationships between nutrient concentrations in different 
plant components as derived from literature. 

Tropical rain forests are well adapted to scarcity of nutrients. Retranslocation of 
nutrients from leaves to wood before abscission of the leaves is the most prominent 
nutrient-conserving mechanism. The fraction of the nutrients in the leaves that is 
retranslocated can be related to the nutrient status of the leaves (Section 6). 

Nutrient status and moisture conditions influence both specific leaf area (leaf area 

per mass unit of dry matter), and leaf life span, and thus leaf area index (ratio of 

leaf area to land area). The leaf area index is a regulating factor for transpiration 
and evaporation. Regression equations for the calculation of specific leaf area as 

influenced by foliar nutrient contents, and for leaf life-span as a function of nutrient 
status and moisture stress are presented in Section 7. 
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Each section concludes with a set of calculation rules to be used in the model. 

1.2 Is the growth of tropical forests nutrient-limited?

1.2.1 General remarks 

The most important presupposition in NUTCYC, the precursor of the present 

model (Noij, 1988) was that plant growth in humid tropical forest areas is limited 

by phosphorus. However, it appears from literature that neither this presupposition, 
nor the presupposition that nutrients are limiting growth in these areas, is self­
evident for the vegetation in forests. 

Growth of annual crops tend to be nutrient-limited in these areas according to 

agricultural literature (e.g., Sanchez, 1976; Van Reuler & Janssen, 1988). Moreover, 

63% of the soils in the humid tropics belong to the highly weathered and 

nutrient-poor Oxisols and U ltisols (Jordan, 1985). In contrast with annual crops, 
however, perennials and forest ecosystems possess a variety of nutrient-conserving 

mechanisms such as high nutrient efficiency (i.e. high dry-matter production per 
unit of nutrient), inherently low growth rates, high retranslocation efficiency, long 
leaflife-span, efficient nutrient-uptake mechanisms as a result of mycorrhizae, high 
fine-root turnover rates, and a root mat on the mineral soil. Some of these 

mechanisms contribute to maximizing the residence time of nutrients in the vege­

tation. 

There is no agreement in the literature on the question of nutrient limitation of 
humid tropical forests (Jordan & Herrera, 1981; Proctor, 1983; Vitousek 1982, 
1984), partly because data are insufficient to recognize tendencies, partly because 

it is hard to find locations which are differing in nutrient status only. To study the 
influence of several individual nutrients separately is even harder. 

1.2.2 Nutrient concentrations in litter 

In case of perennial plants, nutrient efficiency should be defined as the ratio of the 

amount of dry matter that is lost or permanently stored during a certain time period 
to the amount of nutrient that is lost or permanently stored during the considered 

time period (Vitousek, 1982). 

In case root biomass is in steady state, and throughfall or nutrient leaking from the 
plant may be neglected, nutrient efficiency equals the reciprocal of the weighted 

average nutrient concentration of the phytomass increment and the produced dead 
material. In practice, this means that for a mature forest, nutrient efficiency is the 

reciprocal of the weighted average nutrient concentration of heartwood increment 

and litter production. Unfortunately, especially for the tropics, little is known about 
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nutrient concentration of wood increment, but the few data available showed the 
same tendencies as Vitousek (1982) discovered for litter. Therefore he proposed 
to use production and nutrient content of litter as a measure for nutrient efficiency 

of the forest as a whole. This seems reasonable because only a small fraction of 
total above-ground nutrient uptake is assigned directly to the wood component 

(Section 5). 

Vitousek (1982) found N efficiencies in litter varying from 45-250, P efficiencies 

varying from 800 (in one case 500) to 5000 and Ca efficiencies varying from 40-400 

kg (dry matter) per kg of nutrient taken up, for a large number of forest ecosystems 
around the globe. The best correlation found was between litter production and the 

amount ofN fallen with litter, which suggests N limitation in these forests. However, 

most tropical evergreen forests were not N-limited. 

In a later publication, Vitousek (1984) reanalyzed the results for tropical forests.
In this study, he related litter production to climatic factors. Deviations from the 
regression line between climatic factors and litter production proved to be correlated 
best with P and poorest with N. Hence, the highest correlation coefficient was found 

for the relation between litter production on the one hand and a combination of 
climatic factors and P concentration in the litter on the other hand (R2 

= 0.60; R2

was 0.44 when P concentration was not included) . The correlation coefficient was 
higher for the wet lowland tropics alone (altitude < 500 m, precipitation > 1700 

mm), and was even 0.94 for 'tierra firme' (i.e. never flooded) forest in the Amazon 
basin. Litter production probably was P-limited if the rate of litter-phosphorus 

turnover was less than 3 kg/ha per year and the P concentration in litter was less 
than 0.4 g/kg. 

Comparable data for the cases were not found in literature. It is concluded that in 

wet lowland tropics P usually is the limiting factor, and in the temperate regions N 
is usually limiting. Transitional situations do occur. 
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2 ROOT DYNAMICS 

2.1 Root dynamics and nutrient cycling

Production and turnover of roots, especially fine roots ( d < 2, 5, 6 or 10 mm ; d 

stands for diameter), are hard to measure. The most obvious reason for this are 

the sampling problems. Apart from that, root production is not simply root incre­
ment as large amounts of small roots are continuously being sloughed during growth 
(Coleman, 1976). A fine-root sample therefore contains living and dead material, 
between which there is not always a clear distinction as illustrated by the term 
'composite fine roots' (Klinge & Herrera, 1978) . Most information on roots in forest 
ecosystems is therefore restricted to the standing crop of roots, and their distribution 

over diameter classes and through the soil profile. 

Based on the scarce information available, many authors stress the importance of 
(fine-) root dynamics in nutrient cycling (Charley & Richards, 1983; Herrera et al., 
1984; Jordan, 1985; Vitousek & Sanford, 1986). Turnover of fine roots appears to 
contribute more than 50% to the total annual nutrient turnover on several sites. 

Hence root dynamics should be included in a nutrient-cycling model and the best 
has to be made of the available information. Especially the roots finer than 2 mm 

require attention, because these roots are still unsuberized, have the highest nutrient 
absorption capacity and a very short life span (Newbould, 1968; Jenik, 1978). 

The growth and turnover of fine roots, their transition into coarse roots, and 

coarse-root turnover are processes which have implications for the model. 

2.2 Roots in tropical forests

The available data on roots found for tropical humid forests (Table II.1) suggest a 
higher root-shoot ratio, a higher proportion of fine roots in total amount of roots, 

and a higher fine-root production rate on infertile than on fertile sites. A higher 
root-shoot ratio under nutrient-poor conditions is a well known phenomenon, both 

in agriculture (mostly monoculture) and in natural vegetation (Chapin III, 1980) . 
Both high root-shoot ratio and higher proportion of finer root classes under nutrient 
stress may be the result of a higher (fine-)root production, a lower (fine-)root 
sloughing or both. In most cases fine roots have been measured without distin­

guishing living and dead roots. The relative decomposition rate of the fine-root 
debris may then affect the results which can be shown as follows. Let us assume 

that dead root material will not be recognized as such in a fine-root sample when 
it has been decomposed for more than one third and that the time required for such 
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a decomposition is n days. For an estimation of n, we may apply Janssen's (1984, 
1986) equations on "young" organic matter decomposition (Part I, Section 3.2.1). 

With an 'initial age' of 1.0 year and for ft a value of 4.0 for the wet tropics, this 

means a dead root ( d < 2 mm) will not be taken into account anymore in a sample, 

Table II.1 Root characteristics of humid tropical forests arranged by soil fertility. After Vitousek 

& Sanford (1986), unless indicated otherwise

Root-

shoot 

ratio 

Site 

Moderately fertile soils 

1 Ghana, Kadea 0.11 
2 Costa Rica 0.04b

Montane 
3 New Guinea 0.13 

Infertile oxisols/ultisols 
4 Brazil 0.08 
5 Brazile 0.26 

6 Venezuela 0.16 

7 VenezueJah

Spodosols/psamments 

8 Venezuela 0.71 
9 Brazil 

a Greenland & Kowal, 1960.
b Jordan, 1985. 
c Raich, 1980. 
d Edwards & Grubb, 1982.
e Klinge et al, 1975. 
f Stark & Pratt, 1977. 
g Jordan & Escalante, 1980.

Root biomass (Mg ha-1)

Total Fine Fine/ 
total 

22.1 4.45 0.20 
14.4b 2.9C 0.20 

40.od 2.8 O.o7 

32.2 14.57 0.45 
255! 49! 0.19 

56 32f 057 

132.2 92.si 0.70 
29.5 15.9 0.54 

h Sanford, 1985: upper 10 cm of the soil. 
Klinge & Herrera, 1978.

j Herrera & Klinge, 1979.

Fine roots 

diamo., productionP method
mm Mg ha-1

6.25 

2 2.7C k 

5 

6 

6 2.og 

2 15.4 m 

6 32.9j n 
6 

k Fine-root regrowth was measured 1 year after felling a 5-year old successional vegetation next to 

mature forest. 
Combination of three ingrowth experiments, lasting 9, 10 and 30 months. 

m Monthly observation of sequential cores. 
n Ingrowth experiment of unknown duration. 
o Upper limit of diameter class.

p Production at the end of one year of ingwwth or regrowth. 
Fresh weight samples. 
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from 15 days after having been sloughed. Assuming a mean residence time of roots 

(d < 2 mm) of 122 days (see Section 2.3), the ratio of living to dead fine roots in 
steady state would then be 122/15 = 8.1, in other words about 11 % of the fine roots 

measured would be dead. So, the interference of decomposition rates in the results 
of fine-root measurements for differing fertility levels, mentioned above, is probably 

not big. 

2.3 Root turnover and root productivity

For temperate zones, more information on roots in forest ecosystems is available 
than for tropical zones (Vogt et al., 1986). For temperate, cold and boreal forests, 

fine-root turnover and mass are in the range of 0.5 - 16.0 Mg/ha per year, and 0.5 
- 13.0 Mg/ha, respectively. The correlation Vogt et al. (1986) found between 

turnover and mass in cold-temperate and boreal coniferous forests suggests a mean 
residence time of fine roots (several classes) of about one year in these forests. For 

broad-leaved forests they found correlations between fine-root (several classes) 
turnover on the one hand and latitude (R 2 = 0.61, P < 0.10) and mean climatic ratio 
(annual precipitation/mean annual temperature, mm/OK; R2 

= 0.79, P < 0.05) on
the other. Extrapolation of these relationships to two exemplary tropical forests on 

the equator, both with a mean annual temperature of300 °K (27°C) and an annual 
precipitation of 1500 and 3000 mm, leads to 'estimates' for fine-root turnover of 

about 10 and 4-0 Mg/ha per year, respectively. Although such an extrapolation is
precarious, it gives an idea of the order of magnitude we may expect for fine-root 
turnover or productivity in humid tropical forests. 

If root mass and root productivity are indicated by M and F (formation), respectively, 

and r is the relative rate of turnover, it holds: 

dM/dt = F - r · M [II . I]  

If  M = 0, at t = 0, integration yields: 

M = (F/r) (l-exp (-rt)) [II .2 ]  

Applying this equation to  three wheat experiments conducted to  study root dynamics 
(Sauerbeck & Johnen, 1977; Martin & Puckridge, 1982; Keith et al., 1986), mean 

residence times were found of 45, 42 and 48 days. A faster turnover of wheat roots
than of tree roots may be expected, because wheat has to take up nutrients and 

water within a much shorter growing season, and also because in case of wheat a 

larger fraction of the assimilates is available for root growth than in case of trees 
(no wood component, so less maintenance and conversion losses). 
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Sanford (1985, 1986) found for fine-roots (d < 2 mm) a relative turnover rate of 

25% per month in a Venezuelan Oxisol with rain forest cover. This was based on 
monthly observations according to the sequential coring method, which is consi­

dered most reliable. This indicates a mean residence time of living roots ( d < 2 

mm) of 122 days, one third of the value mentioned above for cold regions. In view 
of the higher and more constant temperatures in tropical regions, resulting in higher 

and more constant physiological activity of fine roots, lower values for mean resi­
dence time may be expected in the humid tropics than in the temperate regions. 

The fact that the estimates of fine-root turnover are lower for tropical forest than 
for wheat indicates that the influence of plant species on root turnover is more 
important than the impact of climate. 

Some other estimates of root turnover can be derived from the root-ingrowth 

experiments at Site 2 (Table II.1) for roots (d < 2 mm) and at Site 8 for roots (d 

< 6 mm), if it is assumed that the given values for root biomass refer to steady-state. 
The following equation applies for Site 2: 

2.7 = (F /r) (1-exp (- r · 1)), where F /r = 2.9 [ I I  .3] 

Hence (1 - exp(- r)) = 0.931 and r = 2.674. The corresponding mean residence 

time is 136 days, which is close to the 122 days found by Sanford (1985) for roots 
(d < 2 mm). 

A problem for Site 8 is that the authors do not mention how long the period of 

ingrowth was. Assuming a period of one year, it is found for Site 8: (1- exp (-r)) = 

32.9 /92.5 = 0.356, and r = 0.4395. The corresponding mean residence time would 

be 2.275 years. This value is unlikely high compared to the value of one third year 
for roots (d < 2 mm) and of one year for forest-tree roots in temperate regions. 

Perhaps the ingrowth period on Site 8 was less than one year. 

It was decided to assume in the model that the mean residence time of roots ( d < 
6 mm) is one year, equal to the value in temperate regions. In the model roots (d 

< 6 mm) are not further subdivided into roots (d < 2 mm) and roots (2 mm < d 
< 6 mm), because it was impossible to find the required data. 

2.4 Transition from fine to coarse roots 

Fine roots disappear as such when they are sloughed, or when they grow thicker 
than 6 mm, or any other diameter that is taken as the boundary between fine and 

coarse roots. No records are known to us on the relative importance of the two 
processes. Estimates can be derived from the data of Table II.1, if some assumptions
are made. The first one is that the data on dry matter of total and fine roots refer 
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to steady-state situations. The second assumption, based on the fact that nutrient 
concentrations of coarse roots are lower than those of fine roots, is that the fine 

roots that pass into coarse roots form the only source of nutrients for coarse roots. 
If these two assumptions are correct, the loss of nutrients from dying coarse roots 
must equal the transfer of nutrients from fine to coarse roots. Thus it holds: 

FCRTR · GROOTnM · GROOTCi = 

FFRTR · FROOToM · FFRCRT · FROOTCi [l 1 .4]  

where: 
= fraction of coarse roots that is turned over per time step 
= amount of dry matter in coarse roots 
= concentration (mass fraction) of nutrient i in coarse roots. 

= fraction of fine roots that is turned over per time step 
= amount of dry matter in fine roots 

FCRTR 
CROOToM 
CROOTCj 

FFRTR 
FROOToM 
FFRCRT = fraction of rate of fine-root turnover that is transferred to coarse 

roots 

FROOTCj = concentration (mass fraction) of nutrient i in fine roots 

The transfer fraction (FFRCRT) can be found after reorganizing the above 

equation: 

FFRCRT = (FCRTR/FFRTR) (FCROOToM/FROOToM) 
(FCROOTCi/FROOTCj) 

FCRTR and FFRTR can be calculated as follows: 

FCRTR = 1 - exp (- RRCRTR · J t) 

FFRTR = 1 - exp (- RRFRTR · J t) 

where: 

RRCRTR = relative rate of coarse-root turnover (1/yr) 
RRFRTR = relative rate of fine-root turnover (1/yr) 

a t = time step (yr) 

[ I I .S]  

[I I .6]  

[II .7]  

For RRFR TR of  roots ( d < 6 mm), i t  was decided to use a value of 1.0 /yr (Section 

2.3). No data on RRCRTR are available. In the model it is assumed that RRCRTR 

is twice the relative rate of wood fall. In steady-state, relative wood-fall rate is 

assumed to be 0.01, and thus RRCRTR can be taken as 0.02. Hence, for a time step 
of one year, it holds: 

FCRTR/FFRTR = (1-e-0.02)/(1-e-1) = 0.0198/0.63212 = 0.0313 [II .8] 
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The values for CROOToM and FROOToM can be obtained from Table II.1. In 

Table II.3, CROOTnM-FROOTnM ratios are given for five sites. Values vary from 

0.43 (Site 8) to 3.97 (Site 1). Site 3 is further left out of consideration, because it 

has an exceptionally high value, namely 13.3. 

Nutrient concentrations in roots are calculated in the model. Table II.8 in Section
5.5 presents minimum and maximum values of nutrient concentrations in the various 
plant components. In general, coarse roots have lower concentrations than fine 

roots. For the minimum and maximum concentrations the ratio CROOT­
CJFROOTCj was calculated (Table H.2). The value of the ratio increases in the 

order of N, P and K, and increases with increasing nutrient concentrations. The 

extremes are 0.3 and 1.0. 

Table II.2 

Minimum 
Maximum 

Ratios of the concentrations (g/kg) of N, P and K in coarse (d>6 mm) and fine (d<6 

mm) roots, CROOTCi/GROOTCj, in the situations of minimum and maximum con­

centrations of N, P and K See also Table II.6

N 

0.30 
0.86 

p 

0.42 

1.00 

K 

0.80 
1.00 

In Table II.3 the value of FFRCRT is calculated using Equation II.5, and 0.0313 
and as value for FCRTR/FFRTR. This is done for the indicated ratios 
CROOT oM/FROOT DM and for the two extreme values of CROOTC/FROOTCj, 
being 0.3 and 1.0. The values calculated for FFRCRT range from 0.0040 to 0.1242, 

so a difference by a factor of 31. A still larger range might be expected if 
FCRTR/FFRTR is not kept constant. The ratio CROOTnM/FROOToM varies 
by a factor 10 and this is the main source of variation in the calculated FFRCRT 
values. The variation in CROOT DM/FROOT DM is positively related to soil fertility. 

When applying the model, the value of CROOTnM/FROOTnM is an output and 

not an input parameter. Hence, it would be impossible to calculate FFRCRT with 

Equation II.5. Therefore, it is necessary to introduce in the model a parameter that 

is, like CROOTnM/FROOTnM, related to soil fertility. This parameter has been 
called Soil Fertility Index (SFI). It is proposed to use for SFI the ratio of actual ( = 

nutrient limited) and potential ( = water-limited) new growth of leaves. Both are
calculated in the model for each time step (Part III, Section 3.4.3). The value of the 

ratio and thus of SFI lies between 0 and 1. In Equation II.5, SFI should take the 
place of CROOTnM/FROOTnM, of which the values range from 0.43 to 3 .97 in 
Table II.3. So, the value of SFI cannot be equal to the value of 

CROOToM/FROOTnM, in other words: 
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CROOToM/FROOToM = q. SFI [ II .  9 ]  

where q is a constant, estimated as follows. It was assumed that the maximum value

of CROOToM/FROOToM is equal to 5, a little higher than the value on Site 1 in 

Table II.3. This maximum will be obtained on fertile soils, where SFI equals unity. 
Hence: 

q = (CROOToM/FROOToM)/SFI = 5/1 = 5 [ I I .  l OJ 

It is obvious that further study is needed to check the relationships found so far to 

describe root dynamics. 

2.5 Implications for the model

A fine ( d < 6 mm) and a coarse ( d > 6 mm) root class are distinguished. Nutrients 
for root growth are primarily assigned to fine roots. Coarse roots obtain nutrients 

only by transfer from fine to coarse roots. Transition of fine roots to coarse roots 
and sloughing are the processes by which fine roots disappear. The division of the 

relative turnover rate of fine roots over these processes is in the proportion of 
FFRCRT and (1-FFRCRT). The translocation fraction, FFRCRT, is: 

FFRCRT = (FCRTR/FFRTR) · q · SFI ·(min. of CRNCi/FRNCi) [ II . 1 1 ] 

where: 
SFI 

CRNCj 

FRNCj 

= soil fertility index = actual new leaf growth/potential new leaf 

growth 
= the concentration (mass fraction) of nutrient i in the newly grown 

coarse roots 
= concentration (mass fraction) of nutrient i in the newly grown fine

roots 

= N, P or K  

mm. =minimum value 

The concentrations CRNCi and FRNCi are found as functions of leaf nutrient 
concentrations (Section 5.5). 

Relative turnover rate of fine roots is set at 1.0/year, and that of coarse roots at 

two times the relative rate of wood fall. It is likely that the relative turnover rate of 

fine roots is related to soil fertility, but there are not enough data available to 

establish a relationship between soil fertility and the relative turnover rate of fine 
roots. 
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Table H.3 

Site 

1 Ghana 
4 Brazil 
9 Brazil 
6 Venezuela 
8 Venezuela 

Ratio of diy matter in coarse roots (CROOTDM) and fine roots (FROOTDM) as 
derived from Table II.1, and translocation fraction (FFRCRT) for CROOT­
Cj/FROOTCj values of 1.0 and 0.3. For explanation see Section 2.4 

CROOTDM/FROOTD FFRCRT 
M at CROOTCj/FROOTCi of 

1.0 0.3 

3.97 0.1242 0.0373 
1.21 0.0379 0.0114 

0.86 0.0269 0.0081 

0.75 0.0235 0.0070 
0.43 0.0135 0.0040 
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3 DRY-MATIER PRODUCTION AND DISTRIBUTION 

3.1 Dry-matter production

In the nutrient cycling model DYNAMITE we started from the hypothesis that the 
production of vegetation is nutrient limited if no moisture stress occurs. This means 

that dry-matter production is not treated explicitly as a function of weather and 

canopy characteristics. In principle dry-matter production is calculated for every 
component in the vegetation as the increase in nutrient amount divided by the 
nutrient concentration (see Section 5 and Part III, Section 3.4). Yet, in order to get 

an idea on the order of magnitude of tropical-forest productivity and of the distri­
bution of nutrients over above- and below-ground plant parts, the data of Table II.4 

were gathered. 

These estimates of primary productivity may be underestimates because (fine-)root 
productivity is generally not included (Jordan, 1985), or may be overestimates due 

to a bias in the selection of forests towards those relatively large in biomass and 
high in productivity (Brown & Lugo, 1984), and they may have been influenced by 

the inclusion of secondary forests. The first problem may be overcome by involving 
the root-productivity data of Section 2. Furthermore, it is assumed that Brown and 
Lugo's (1982) range is the most realistic for above-ground productivity, although it 
appears from the data of Jordan (1985) and Vitousek & Sanford (1986) that 
above-ground productivity lower than 10 Mg ha-1 yr-1 may occur on the less fertile
sites. 

Root formation (F) was calculated after reorganizing Eq. II.2: 

F = M · r/(1 - exp (- rt)), 

where: 

M = 2.7 and r = 2.674 for Site 2, 

M = 15.4 and r = 3.0 for Site 7 (Section 2.3) 
t = 1 at both locations. 

The root productivity at Site 7 may be higher than the calculated value of 48.6 
tons/ha per year as only the upper 10 cm of the soil had been sampled. 
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Table II.4 Estimates for net primary productivity of tropical forests in Mg/ha per year 

Forest type 

and/or component 

rain forests 

seasonal forests 

various forests 

various forests 
total 

leaves 

wood 

various forests 
total 

leaves 

wood 
leaf litter 

wood 

various forests 
roots (d < 2  mm) 

roots (d < 2  mm) 

a Whittaker & Likens, 1975.
b Brown & Lugo, 1982.

c UNESCO, 1978. 
d Jordan, 1985. 
e Table II.1 of this study: Site 2. 

f Table II.1 of this study: Site 7. 

s.d. = standard deviation. 

3.2 Dry-matter distribution

Range
" 

10-35 

10-25 

10 - 20 

9.0-32.0 

2. 1 -12.0

4.6 - 19.2 

s.d. = 7.2 

s.d. = 5.6 
5.0-11.3 

3.9 - 6.4 

Average 

22 

16 

16.9 

9.6 
7.3 

7.75 

48.6 

Reference 

a 
a 

b 

c 

d 

e 

f 

From Jordan's (1985) data it may be derived that wood productivity is about 75% 

of leaf productivity. Above-ground productivity is assumed to be 10 Mg/ha per year 
and 20 Mg/ha per year at sites of low and high fertility, respectively. Other com­
ponents than roots, wood and leaves are neglected (twigs, fruits, small branches) 
to calculate the typical dry matter distribution patterns of Table II.5. 

The high total productivity at low fertility sites must be entirely ascribed to high 

root productivity. The apparent contradiction of high total productivity at low fer­
tility level is a result of the fast turnover of fine roots. The low residence time of 
nutrients in the root compartment implies that in fact the same nutrients are used 

again and again to form new roots. As young roots are thinner, have a higher specific 

surface and are more actively absorbing nutrients than older roots, this phenomenon 
can be seen as an adaptive strategy to nutrient stress (Herrera et al., 1984). 
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Table II.5 

Components 

leaves 

wood 

(fine) roots 
total 

Productivity of vegetation components in Mg/ha per year (A) and as fraction of total 
productivity (B) at sites of h igh and low fertility. Root productivity data from Table 

II.4 

Low fertility 

A 

5.7 

4.3 

48.6 

58.6 

60 

B 

0.10 
0.07 

0.83 
1.00 

High fertility 

A 

11.4 

8.6 

7.8 
27.8 

B 

0.41 
0.31 

0.28 
1.00 



4 NUTRIENT UPTAKE 

4.1 Nutrient ratios

The uptake of nutrients is a result of the supply by the soil and the demand by the 

plant. In DYNAMITE, the supply of nutrients is calculated as the net sum of a 

number of processes by which nutrients enter or leave the solution. The nutrients 

are supplied in ratios that often deviate from the optimum ratios for plant growth. 
As a consequence, nutrients are not taken up proportionally to their amounts in 

the solution. 

In Section 4.2, nutrient ratios as found in leaves of tropical forests are compared 

with those found in annual crops. This is done to justify the application of results 

of pot trials with annuals for the quantitative description of nutrient uptake as a 
function of the supply of nutrients in the soil solution (Section 4.3). We had to use 
these data because no quantitative relationships between supply and uptake of 
nutrients by forest vegetation were found in the literature. 

4.2 Ratios of nutrient concentrations in plants

The results of three pot trials were reinterpreted for the purpose of modeling. These 
trials, one with Chinese cabbage and two with maize, were conducted by students 
at the Department of Soil Science and Plant Nutrition of the Wageningen Agri­

cultural U niverstity (Rijkelijkhuizen, 1987; De Groof, 1988; Scheltema, 1989). All 
three experiments included different fertilizer combinations of N, P and K, thus 

creating strongly varying ratios in nutrient supply and uptake. The plants were 

harvested after about two months. From the results (Appendices II.2, II.3 and II.4) 

maximum and minimum ratios of nutrient concentrations were derived. They are 

compared with those in leaves of tropical forests (Table II.6). Also included are the 
maximum and minimum ratios found for the nutrients present in the above-ground 
plant parts of mature maize; these values were found in field experiments with maize 

in Kenya and Suriname (Janssen et al., 1990). 

Table II.6 shows that the maximum N-P and the minimum K-N ratios of maize and 
Chinese cabbage correspond well with the respective ratios in tropical forest leaves. 

In natural environments, extreme supply ratios may be found only when nitrogen 
is involved. This is because in natural environments leguminous plants secure 
nitrogen supply to the vegetation (either directly or indirectly), leading to a relative 

abundance of nitrogen in otherwise nutrient-poor environments (high N-P and low 
K-N ratio). This implies that the minimum N-P and P-K, and the maximum P-K 
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and K-N ratios of tropical forest leaves cannot be found without purposive 

experimentation. However, the available data do not suggest extreme nutrient ratios 

in tropical forest leaves entirely different from those found in the pot experiments. 
Therefore, it can be assumed that nutrient ratios of the above-ground plant parts 

in the pot exJ)eriments are the same as in leaves of tropical forests. This is considered 

Table II.6 Minimum and maximum values of nutrient concentration ratios, in above-ground plant 
parts of Chinese cabbage, various plant parts of maize, and tropical-forest leaves 

Maximum ratios 

Chinese cabbagea

Maize, two months, pot trialb

above-ground 

roots 
above-ground + root� 

Maize, mature, field trialsc

Tree leaves 
Medina, 1984d 

Appendix II.le

Overall estimate 

Minimum ratios 
Chinese cabbagea

Maize, two months, pot triaJb 

above-ground 
roots 

above-ground + rootsg 

Maize, mature, field triaJsC 

Tree leaves 

Medina, 1984d

Appendix II.1 f

Overall estimate 

a Rijkelijkhuizen, 1987. 
b De Groof, 1988; Scheltcma, 1989. 
c Janssen et al., 1990. 

N/P 

27 

30 
25 

23 

20 

29.1 

36.7 

30 

3.0 

3.0 
6.0 

2.1 
2.9 

10.7 

9.9 

3 

d Data set of Medina (1984) includes several references from which extremes 
were chosen. 

e Average of highest three values in Appendix II.1. 
f Average of lowest three values in Appendix II.1. 

g These values are not between those for roots and for above-ground parts, 

because they do not refer to exactly the same objects. 

62 

P/K K/N 

0.55 2.4 

0.67 2.9 
0.40 1.2 
0.75 2.3 
0.60 2.3 

0.18 1.4 
0.16 0.9 

0.6 2.6 

0.035 0.28 

0.028 0.26 
0.036 0.26 

0.040 0.18 
0.050 0.25 

0.044 0.35 
0.064 0.26 

0.03 0.26 



as an indication that the uptake ratios for forest vegetation do not substantially 
differ from those for annual crops. 

In roots, the content of P is usually higher and the content of K lower than in the 
above-ground plant parts, and the range in nutrient ratios is smaller. 

4.3 Relationships between nutrient supply and nutrient uptake

Uptake data for roots + above-ground plant parts of maize as found in the expe­

riments by De Groof (1988) and Scheltema (1989) were used to relate nutrient 
uptake to nutrient supply. In both experiments, the potential nutrient supply by soil 
and fertilizers was calculated according to the procedure developed for the 
QUEFfS model (Janssen et al., 1990). Potential supply is defined as the uptake by 

the plant if no other growth factors than the considered nutrient are limiting. So, 

potential N-supply by the soil is the maximum N uptake by the plant at zero-N 
application, and the increase in potential N supply brought about by fertilizer N is 

the maximum amount of fertilizer N recovered by the crop. In trials set up to find 
the potential supply of a particular nutrient, usually rather high applications of the 
other nutrients are required. 

The experiment by De Groof was a 3N x 5P x SK factorial. Thus there were 15, 25 

and 15 different ratios of the supplies of N and P, of P and K, and, of K and N, 
respectively . The experiment by Scheltema was a 33 factorial, resulting in 9 different
ratios for each of the combinations N-P, P-K and K-N. 

The experimental results have been elaborated in ratio diagrams, as introduced by 
De Wit (1%0), and applied in plant-nutrition studies by e.g. Braakhekke (1980). 

First for each pot the supply and uptake ratios and their logarithms were determined. 

These will henceforth be denoted by log SN/SP, log SP /SK, log SK/SN, 
log UN /UP, log UP /UK, and log UK/UN. For each value oflog SN /SP, the average 

of the corresponding values of log UN/UP was calculated. The same procedure 
was followed for log SP /SK and log UP /UK. The average values of the logarithms 

of the uptake ratios were plotted against the logarithms of the supply ratios (Fig. 

H.1 and II.2) . It appeared that for a given log SN/SP, the values of log U N/UP 
were close together and were not affected by the level of SK. Similarly, log UP /UK 

did not vary much at a given log SP /SK, and was not affected by the level of SN. 
The values of log U K/UN, however, varied considerably at a given value of log 
SK/SN, and were strongly affected by the level of SP. Therefore, there was no 
purpose in seeking a relationship between log UK/UN and log SK/SN. 

The relationships found in Fig. II.1 and Fig. II.2 are 

log U N/UP = 0.3 + 0.7 log SN/SP [ II. 1 2] 
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Fig. 11.1 

Fig. II.2 

log UN/UP 

1.2 

0.8 

0.4 

0+-�-,-��.-�-,-�-,.��.--�-.-�-,.��.--�-,-�--,����� 
0 0.4 0.8 1.2 1.6 2.0 2.4 

log SN/SP 

Relationship between the uptake ratio of nitrogen and phosphorus (UN/UP) and the 
supply ratio of nitrogen and phosphorus (SN/SP), for two-months old maize (De Groof, 

1988; Appendix II.9; Scheltema, 1989; Appendix II.10). 

log UP/UK 

0 

-0.4 

-0.8 

- 1.2 

-2.0 -16 -1.2 -0.8 -0.4 

.. 

0 

log SP/SK 

Relationship between the uptake ratio of phosphorus and potassium (UP /UK) and the 

supply ratio of phosphorus (SP /SK), and potassium for two-months old maize (De Groof, 

1988; Appendix II.9; Scheltema, 1989; Appendix II.10). 
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log UP /UK = -0.05 + 0.95 log SP /SK [II.13] 

For log UN/UP there seems to be a maximum value of 1.3, which means that the 
uptake of N will not be more than 20 times the uptake of P. For log UP /UK a 

minimum value of about -1.4 is found (Fig. II.2), which means that the uptake of P 

cannot be less than 0.04 times the uptake ofK. In both cases, at the maximum value 
oflog UN /UP and at the minimum value oflog UP /UK, P was very strongly limiting 

plant growth and N and K fertilizers probably caused salt damage in these pots. 

EquationsII.12 and II.13 can be combined to formulate an equation for log U K/UN: 

log U K/UN= -0.25 + 0.95 log SK - 0.7 log SN - 0.25 log SP [II.14] 

Equation II.14 shows that with increasing supply of P, the value of U K/UN 

decreases. In other words, application of P stimulates the uptake of N more than 
the uptake of K, and this is exactly what has been observed in the pot experiments. 

It cannot be seen from Fig. II.1 and Fig. II.2 whether there is a minimum value for 
log U N/UP or a maximum value for log UP /UK. The trials probably did not include 

a P level high enough to find such extremes. The maximum and minimum values 

mentioned in Table II.6 for these ratios can be used until more proper estimates 
have been found. 

4.4 Implications for the model

The uptake of N, P and K is calculated according to the following rules. Equations 
II.12, II.13 and II.14 are applied to find UN/UP, UP /UK and UK/UN; maximum

ratios are set at 20, 0.6 and 2.3, respectively, and minimum ratios at 2.1, 0.04 and 

0.25, respectively. 

It is assumed that the most limiting nutrient will be taken up completely. The uptake 

of the other nutrients follows from the uptake of the most limiting nutrient and the 
calculated uptake ratios. To identify the most limiting nutrient, the following ratios 
are calculated: 

(UN/UP)/(SN/SP) =A or U N/SN = A ·  UP/SP [II.IS] 

(UP /UK)/ (SP /SK) = B or UP /SP = B · UK/SK [II.16] 

(UK/UN)/(SK/SN) = C or U K/SK = C ·UN/SN [II.I?] 
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The coefficient with the highest value indicates the most limiting nutrient: 
if A> B and C, N is most limiting; 

if B > A and C, P is most limiting; 
if C > A and B, K is most limiting.
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NUTRIENT CONCENTRATIONS AND DISTRIBUTION 

5.1 Method of data presentation

To obtain a better understanding of the way nutrient concentrations and distribution 
in natural vegetation vary among different sites in the humid tropics, data from
several studies were corn piled in Appendix II.1-II. 7. The arrangement by soil fertility 

used there was adopted from Vitousek & Sanford (1986) who presented foliar 

nutrient concentrations in this way. For the same locations as for which these authors 
collected leaf data, it was tried to find as many data as possible on the nutrient 
concentrations of the other components of the vegetation. As data o n  nutrient 
contentrations are more scarce for wood and roots than for leaves, results from 

other studies were added to get a picture as complete as possible. A complication 
is that different authors distinguish or define vegetation components differently. In 
Appendices II.2 to II.7, this problem has been overcome by indicating with arrows 
to which component(s), each represented by a column, a certain number applies. 
If the boundary of a component had not been clearly defined, the point o f  the arrow 

has been omitted. 

Vitousek & Sanford (1986) recorded foliar nutrient concentrations, generally cal­
culated as the arithmetic mean of several species, whereas in our study geometric 
means were calculated for all components, if sufficient data were available. 
Geometric means are weighted for species abundance or for the biomass proportion 

of a particular vegetation component (e.g. undergrowth, palms, trees divided in 

DBH or D2H classes). According to Tanner (1985) geometric means of foliar
nutrient contents are usually lower than arithmetic means. This is true indeed for 
the Jamaican sites he studied, but not at many other places. Most authors present 

nutrient concentrations of a particular corn ponent for a clearly dominant vegetation 

component (e.g. trees with DBH > 10 cm). This implies that such data generally 
are fairly good estimates for the nutrient concentration of the component in the

vegetation as a whole, and then the difference between arithmetic and geometric 
means are small. Therefore in case not sufficient data were available to calculate 
the geometric means, arithmetic means were included in our analysis. 
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Fig. II.3 

Fig.II.4 
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Relation between N-concentrations in leaves and boles (above), and leaves and branches 

(below) for several humid tropical forests (Appendices II.1 and II.2). Boles: o includes 

twigs and branches, . without bark, x no or only thickest branches included, ? left out for 

regression, i 18-year old forest. Dotted line: see text. Linear regression equations: see 

Table II.7. 
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Relation between P-concentration in leaves and boles (above), and leaves and branches 
(below) for several humid tropical forests (Appendices II.1 and II.2). Boles: o includes 

twigs and branches, . without bark, x no or only thickest branches included, vertical lines 
represent range for heartwood - sapwood transition, ? excluded from analysis, i 18-year 
old forest. Linear regression equations: see Table II. 7. 
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5.2 Leaves 

5.2.1 Nitrogen 

Nitrogen concentrations in leaves range from 0.6 - 2.5 % for entire forests (Appendix 
II.1), whereas individual species may reach lower limits of 0.4 % (Medina, 1984).

The highest levels are found on 'moderately fertile' soils, the lowest levels on 
'Spodosols/Psamments' and some 'montane sites'. 

Vitousek (1984) suggests that the vegetation on 'Spodosols/Psamments' is nitrogen 

limited. Indeed, lowest foliar N-P ratios and highest K-N ratios were found for 
'spodosols/psamments' and one 'montane site' (Hawaii; Appendix II.1). Nitrogen 

levels are most probably correlated with conditions for nitrogen fixation in natural 
vegetation, unless there is some alternative import item like inundation water, such 
as for the igapo's in Brazil. Apparently there is no unambiguous relationship of such 

conditions with fertility level of the site, for foliar N concentrations are relatively 

high for 'infertile Oxisols/Ultisols' and vary widely on 'montane sites'. Probably, 
also factors such as climate, organic matter content, depth of soil profile and soil 
structure play a role. 'Montane sites' may have shallow soils and less favourable 
climates, 'Spodosols/Psamments' have an extremely low organic matter content, 
whereas 'Oxisols/Ultisols' generally have a deep soil profile, a good structure and 

a favourable climate. 

5.2.2 Phosphorus 

Foliar phosphorus concentrations range from 0.02 - 0.2 %, both for entire forests 
and for single species (Medina, 1984). The concentrations vary with soil fertility. 
The lowest values were recorded for sites that are known to have a low soil P 

availability: 'Oxisols/Ultisols', 'Spodosols/Psamments', and a poor montane site 

(Jamaica-mar). Not all 'Spodosols/Psamments' have low foliar P. Exceptions may 
be due to limitation by anothernutrient, especially N (see Appendix II.1: N-P ratios). 

Although low P concentrations have been recorded for 'Oxisols/Ultisols', P-K 

ratios are not extremely low. This may also be the result of yet another limitation, 

probably cation availability (low K-N and I:KCaMg-N ratios in Appendix II.1). 

5.2.3 Potassium, calcium and magnesium 

Foliar concentrations range from 0.4 - 1.9 % for K, 0.1 - 2.3 % for Ca, and 0.1 - 0.9 
% for Mg (Appendix II.1). In general, the concentrations vary with soil fertility. 

The lowest values for K were recorded for Malaysia ('Spodosols/Psamments'), 

'Oxisols/Ultisols', and Jamaica-mar ('montane') and the highest values for 'mode-
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Fig. II.5 

Fig. II.6 
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Relation between K-concentrations in leaves and boles (above), and leaves and branches 
(below) for several humid tropical forests (Appendix Il.1 and II.2). Boles: o includes 
twigs and branches, . without bark, x no or only thickest branches included, vertical 

lines represent range for heartwood - sapwood transition, ? left out for regression, i 
18-year old forest. Linear regression equations: see Table II.7. 
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Relation between Ca-concentrations in leaves and boles (above ),and leaves and branches 

(below) for several humid tropical forests (Appendices II.1 and II.2). Boles: o includes 

twigs and branches, . without bark, x no or only thickest branches included, vertical 
line represent range for heartwood - sapwood transition, ? left out for regression, linear 

regression. Linear regression equations: see Table II.7. 
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rately fertile soils'. The lowest values for Ca and Mg were found for the 'spodo­
sol/psamment' the Igap6 in Brazil and the 'Oxisols/Ultisols', and the highest values 

for 'moderately fertile soils'. As stated above, cations might be limiting on 

'Oxisols/Ultisols', and K maybe also on some 'Spodosols/Psamments' and 'mon­
tane sites' (see nutrient ratios in Appendix II.1). 

5.3 Stems, branches and twigs

53.l Nitrogen

The branches, bark, sapwood and heartwood show N concentrations which are 
positively correlated to foliar concentrations (Fig. II.3). For branches and boles this 
relation may be described by linear regression. An alternative interpretation of the 
few data available for branches is that there is a constant N concentration of 3.5 
g/kg in branches below a threshold value for the foliar N concentration of 17.5 g/kg, 

and that above this treshold the N concentration in the branches starts to increase 
(Fig. II.3, dotted line). 

The three studies in which twigs were distinguished indicate a nitrogen concentration 
of about 0.8 % with little variation (Appendix H.2), although the foliar N concen­
trations ranged from 1.32 - 2.39 %. 

Bark was analysed separately only twice. It had clearly higher N concentrations than 
the rest of the bole. 

No study at all was found with separate data on N concentration for heart- and 
sapwood. Hase & Foister (1982) found 0.34% N in the boles (Appendix II.2), but 

clearly lower N concentrations in the boles of the oldest and thickest trees (0.22 
%). This indicates that N concentration in heartwood is lower than in sapwood, 
because the proportion of heartwood increases with the age of the tree. This is not 

confirmed, however, by Grubb and Edwards (1982, New Guinea), who found 

substantially higher N concentrations for older boles in nine out of ten species. 

Orman & Will (1960) and Bamber (1976), supplied evidence for withdrawal of N, 

P and K across the sapwood-heartwood transition in Pinus radiata, and of P and
K in Eucalyptus. So, in two out of three studies N concentrations were lower in
heartwood than in sapwood. The existing contradiction on this matter is no real 
problem for the growth module of the model, as no distinction between heart- and 

sapwood is made. 
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Fig. II.7 

Fig. II.8 
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Relation between Mg-concentrations in leaves and boles (above), and leaves and 

branches (below) for several humid tropical forests (Appendices Il.1 and II.2). Boles: 
o includes twigs and branches, . without bark, x no or only thickest branches include,

vertical lines represent range for heartwood-sapwood transition, ? left out for regression. 
Linear regression equations: see Table II.7. 

N in fine roots. g/kg 
14 

10 

6-

N in coarse or total roots, g/kg 
12 

10 

2· 

0-t--������������������������ 
0 10 15 20 25 

N 1n leaves. g /kg 

Relation between nitrogen concentrations in roots and leaves for several humid tropical 
forests (Appendices II.1 and II.3). Above: fine roots (d < 5, 6 or 6.25 mm). Below: . 

coarse roots (d > 5, 6 or 6 .25 mm) and o total roots• average value used for regression, 
? excluded from analysis. Vertical lines represent data of the same site for different root 
diameter classes, horizontal lines refer to an estimated leaf concentration range. Linear 
regression equations: see Table II.7. 
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5.3.2 Phosphorus 

The concentrations of phosphorus in stems, branches and twigs are positively related 
to the corresponding foliar P concentration (Appendices II.1 and II.2; Fig. II.4). It 

may be concluded from these data that P concentrations in boles and branches start 
to increase, when the foliar concentration exceeds a threshold value of about 1 g/kg. 

Except for Brazil - igapo, bark had higher P concentration than the rest of the bole. 

In the only study with separate data for heart- and sapwood (Venezuela-San Carlos) 

a higher P-concentration was found in sapwood. Hase & Foister (1982, Venezuela) 
and Grubb & Edwards (1982, New Guinea), found lower P-concentrations in the 

boles of older trees compared to those in all trees (Venezuela: 0.025 % vs. 0.051 % 
in New Guinea; Appendix II.2). Together with the references cited in Section 5.3.1, 
these studies show a clear trend of lower P nutrient concentrations in heartwood 

than in sapwood. 

5.3.3 Potassium, cakium and magnesium

The concentrations of cations in stems, branches and twigs appear to be positively 
related to those in the leaves (Appendices II.1 and II.2; Fig. II.5, II.6 and II.7). K 

and Ca concentrations in leaves show rather clear linear relationships with those 

in boles and branches. Data for Mg are much more scattered leading to low cor­
relation coefficients. 

The concentrations in bark are clearly higher than those in the rest of the bole wood, 
especially for Ca (5 to 20 times). From Grubb & Edwards' (1982) data it may be 

derived that bark constitutes about 10 % of the biomass of the bole. If this value 

also holds true elsewhere, and the concentration in the bark is ten times as high as 
the concentration in the rest of the bole, the concentration for the entire bole would 
be twice the value for the bole without bark (closed dots in Fig. II.6). 

In Venezuela-San Carlos, the concentrations of K, Ca and Mg in sapwood are 

higher, somewhat higher and somewhat lower, respectively, than those in heart­

wood. Hase & Foister (1982) found a lower K concentration, a lower Ca concen­

tration and a higher Mg concentration, and Grubb & Edwards (1982) found higher 
K concentrations, lower Ca concentrations and lower Mg concentrations in old than 

in young boles. Although these data are ambiguous, a slight trend of Ca and Mg 
accumulation in heartwood and a light trend of K withdrawal from heartwood might 

be discerned, the latter being confirmed by Orman & Will (1960) and Bamber 
(1976); see also Section 5.3.1. Generally, it is found in plant nutrition studies that 
N, P and K are mobile, and that Ca is not mobile, while Mg takes an intermediate 
position (Mengel & Kirkby, 1979.) 
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Fig. II.9 The relation between phosphorus concentrations in roots and leaves for several humid 

tropical forests (Appendices II.1 and II.3). Above: fine roots (d < 5, 6 or 6.25 mm). 
Below: . coarse roots (d :;- 5, 6 or 6.25 mm) and o total roots. • average value used for 
regression, ? excluded from analysis. Vertical lines represent data of the same site for 

different root diameter classes, horizontal Jines refer to an estimated leaf concentration 

range. Linear regressions equations: see Table II.7. 

5.4 Roots

5.4.1 Nitrogen and phosphorus 

A straight line seems to be a reasonable description of the relation between N or 

P concentrations in roots ( d < 6 mm) and in leaves (Fig. II.8 and II.9). Concentrations 
in roots (d> 6  mm) or total roots are generally lower compared with roots (d< 6  

mm), except for P at high foliar concentration. A s  a rule, concentrations decrease 

with increasing root diameter (Appendices II.3 and II.4), but there are some 

exceptions. In Ghana-Kade, New Guinea and Jamaica-mar, roots of the coarsest 
classes had a higher P concentration than those of one class finer. This may be 

interpreted as P storage in the coarsest roots. 
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5.4.2 Potassium, calcium and magnesium

Data on cations are erratic (Appendices II.5, II.6 and II.7; Fig. II.10, II.1 1  and II.12) 

compared to those on N and P. The correlation between fine-root and leaf con­
centrations is rather poor, but clearly positive. As a consequence, the interpretation 
of the data was rather arbitrary. Further studies will have to confirm or refute the 

lower and upper limit suggested for K and Ca concentrations in fine roots in Fig.

II.10 and II.11. Coarse-root concentrations seem also to be positively correlated

too with foliar concentrations. It is hardly possible.. to distinguish between fine and 
coarse roots in this respect, but K and Ca concentrations in coarse roots tend to be

somewhat higher than those in fine roots at low foliar concentrations. 

Fig. II.11 
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Linear regression equations: see Table II.7. 
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Table Il.7 Relationships between nutrient concentrations (g/kg) in boles, branches or roots (y), 
and in leaves (x) 

Nutrient 

Boles 

N 

p 

K 
Ca 
Mg 

Branches 

N 

p 

K 

Ca 
Mg 

Roots (d < 6 mm) 
N 
p 

K 

Ca 

Mg 

Roots (d > 6 mm) 

N 

p 

K 

Ca 
Mg 

Equation 

y = 0.34 + 0.115 x 
if x < 1 , y = 0.1 else 

y = -0.4 + 0.5 x 

y = 0.07 + 0.243 x 
y = - 0.25 + 0.440 x 

y = 0.23 + 0.169 x 

if x < 10, y = 2 
y = - 1.0 + 0.31 x 
if x < 1 ,  y = 0.15, else 

y = - 0.85 + x 
if x > 18.5, y = 5.0, else 

y = 1.06 + 0.213 x 

y = 1.38 + 0.426 x 
y = 0.68 + 0.046 x 

y = 1.86 + 0.441 x 
y = -0.7 + 0.622 x 

if x < 5.1 ' y  = 1 

if x > 10.3 , y = 7.5, else 

y = - 5.39 + 1.255 x 

if x < 4 ,  y = 1 
if x > 7.5 , y = 9 , else 

y = - 8.01 + 2.269 x 

y = 0.51 + 0.351 x 

y = - 1.4 + 0.4 x 
if x < 0.5, y = 0.05, else 
y = - 0.36 + 0.82 x 

if x < 4.6, y = 0.8 

if x > 18, y = 7.5, else 
y = - 1.5 + 0.5 x 

y = 1.375 + 0.375 x 
y = 0.42 + 0.25 x 

R2 Corresponding 
figure 

0.673 II.3

II.4

n.c.a

0.876 II.5 

0.798 II.6

0.369 II.7

II.3
0.799 

II.4

n.c. 
II.5 

0.843 

0.945 II.6

0.224 II.7

0.822 II.8

0.860 II.9

II.10

0.688 

11.11 

0.686 

n.c. II.12

n.c. II.8
II.9

n.c. 

II.10

n.c. 

n.c. II.11

n.c. II.12

a n.c. = not calculated because the number of data was too restricted; see corresponding figures. 
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Fig. II.10 

Fig. 11.12 
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Relation between potassium concentrations in roots and leaves for several humid 

tropical forests (Appendices 11.1 and II.3). Above: fine roots (d < 5, 6 or 6.25 mm).

Below: . coarse roots ( d > 5, 6 or 6.25 mm) and o total roots. • average value used for 

regression, ? excluded from analysis. Vertical lines represent data of the same site for 
different root diameter classes, horizontal lines refer to an estimated leaf concentration 

range. Linear regression equations: see Table 11.7. 
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Relation between magnesium concentrations in roots and leaves for several humid 
tropical forests (Appendices II.1 and II.3). Above: fine roots (d < 5, 6 or 6.25 mm). 

Below: . coarse roots (d > 5, 6 or 6.25 mm) and o total roots. • average value used for 

regression, ? excluded from analysis. Vertical lines represent data of the same site for 
different root diameter classes, horizontal lines refer to an estimated leaf concentration 

range. Linear regression equations: see Table II.7. 
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5.5 Implications for the model

In the model, N, P and K concentrations in wood and roots are calculated as a 
function of the respective foliar concentrations according to the relationships found 

in this chapter. These relationships are described by the equations in Table II.7 
which also contains data on Mg and Ca, for the sake of completeness. 

Minimum and maximum concentrations in the various plant components are pre­
sented in Table II.8. These have been derived from Figures II.3 - II.5 and II.8 - II.10 
and the corresponding appendices (Appendix II.1 -II.5). The data of Tables II.7 and 

II.8 are used to estimate the distribution of absorbed nutrients among the plant
components. The exact calculation procedure is given in Part III, Section 3.4.3. It

is based on the principles described below. 

The absorbed nutrients are distributed in the first instance over fine roots and leaves; 
in formula: 

U P  act,i = GROWFR • FRNCj + GROWL · LNCi 

where 
U Pact,i 
GROWFR 
GROWL 

FRNq 

LNCj 

= total uptake of nutrient i 

= dry matter in newly formed fine roots 

= dry matter in newly formed leaves 
= concentration of nutrient i in newly formed fine roots 

= concentration of nutrient i in newly formed leaves 

[ II . 1 8 ] 

The known factors in this equation are the total uptake of nutrients (see Section 

4.4) and the concentration of nutrients in fine roots, the latter being calculated as 

a function of nutrient concentration in leaves at the beginning of the time step. The 
unknown factors are GROWFR, GROWL and LNq. Now it is assumed that the 

concentration of the growth limiting nutrient will be at minimum in the leaves. So, 

this concentration, indicated by LEAFCDn, is also known. To determine which 
nutrient is yield limiting, the ratios U P  act,i/FRNCi are calculated. The nutrient with 

the lowest ratio is considered to be yield limiting. Now GROWFR can be expressed 
as a function of GROWL: 

GROWFR = UPact,i/FRNq - GROWL • LEAFCDn/FRNCn [ II . 1 9 ] 

GROWFR = A - B • GROWL [ I I .20]  
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Table II.8 Minimum and maximum concentrations of nutrients (g/kg) in various plant compo­

nents 

Component Nutrient Minimum Maximum 

Leaves N 7.5 25 
p 0.3 2 
K 4.0 20 

Boles N 1.2 3.2 
p 0.1 0.6 

K LO 5.0 

Branches N 2.0 7.0 

p 0.15 1.15 
K 1.9 5.0 

Roots, d < 6 mm N 5.0 14.0 
p 0.12 1.3 

K 1.0 7.5 

Roots, d > 6 mm N 1.5 12.0 
p 0.05 1 .3 
K 0.8 7.5 

Equation II.20 is substituted in the equation for UP act h (Eq. II.18), where i refers 
' 

to the non-limiting nutrients. 

UPact,i = (A - B - GROWL) - FRNCj + GROWL • LNCj [ I I . 2 1 ] 

Apart from GROWL, LNCj is unknown in this equation. The maximum and 
minimum values of LNCi, however, are known (Table II.8). For each of the two 
non-limiting nutrients, subsequently the maximum (LEAFCAi) and the minimum 

value (LEAFCDi) is substituted, resulting in two estimates of GROWL: GROWLAi

and GROWLDi (A stands for accumulated and D for diluted). The new growth of 

leaves is finally calculated as the middle of the common overlap of the two yield
ranges between GROWLAi and GROWLDi· If there is no overlap GROWL is 
assumed to equal the lower of the two GROWLDi values. 

Once GROWL is known, GROWFR can be calculated, and subsequently the 
nutrients required in the new fine roots and leaves. If total uptake exceeds the 
quantities needed for fine roots and leaves, the overflow is sent to wood. 
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6 NUTRIENT RETRANSLOCATION 

6.1 Reabsorption efficiency

Retranslocation of nutrients within the plant, sometimes called biochemical cycling, 

is an important process in nutrient cycling. It may satisfy about 50% of the demand

of N and P and 20% of the demand of K, Mg and S in forests. However, it hardly 
contributes to the satisfaction of Ca demand (Charley & Richards, 1983). The most 
important redistribution of nutrients is that from leaves before abscission. Although 
translocation of nutrients from sapwood to heartwood deserves attention too, it is 

not treated here as no distinction is made between these two wood compartments 

in the model. 

Estimates for the reabsorption efficiency (i.e. the retranslocated fraction of nutrients 
present in the living leaf) for N and P range from 35 - 80% for a variety of natural 
vegetations including tropical forests (Medina, 1984; Vitousek & Sanford, 1986; 
Lajtha, 1987). The estimate for K ranges from 10 - 20% for northern hardwood 
forests (Ryan & Borman, 1982), while no or hardly any redistribution of Ca is 

recorded. According to Chapin III (1980) the fraction of the maximum leaf content 
that is reabsorbed ranges from 50 to 90% for N and P, and is below 70% for K 
Redistribution of K is difficult to measure because the element easily leaks from 
both living and dead leaves. We rely on the range of Ryan & Borman (1982) with 
an average of 15 % for K-reabsorption efficiency. 

6.2 Nutrient status and reabsorption efficiency

The information in the literature on the influence of the nutrient status of natural 
vegetations on reabsorption efficiency appears contradictory. Chapin III (1980) 

concludes that.. "In general, plants of high nutrient status retranslocate a larger 
proportion of their leaf nitrogen and phosphorus than plants with low nutrient 
status." Nevertheless, differences in nutrient concentration between living leaves 

and leaf litter may be greater on infertile sites due to different weight loss prior to 
abscission. However, for tropical forests weight losses calculated from the change 

in Ca content range from 12 (montane) to 37.5% (infertile Colombian oxisol) with 
an average of 28%, without any consistent relation to the fertility level of the sites 
(data taken from Table 5 in Vitousek & Sanford, 1986; for the most fertile site 
Ghana in this data, 23% was calculated). So, the reabsorption efficiency in tropical 

forests can probably be derived from, and is positively related to the difference in 

nutrient concentration between living and abscised leaves. 
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Vitousek (1982, 1984) studied production and nutrient content of litter for a wide 
range of fertility levels. We applied the following assumptions to his data: 

- N and P content in living leaves ranged from 10 - 25 and 0.4 - 2.0 g/kg, respectively 
(Table II.8); 

- litter consists for 70% of leaf litter (Proctor, 1983); 
- compared with leaf litter, the remainder 30% of the litter has half the N con-

centration in all cases, one third the P concentration under infertile conditions 
and equal P concentration under fertile conditions (compare 'twigs' with 'leaves' 
in Appendices II.1 and II.2). 

In Vitousek's data N concentrations in litter ranged from 6 - 19 and P concentrations 
from 0.17 to 1.4 g/kg (excluding the most extreme low values), yielding estimates 
for N concentrations in leaf litter ranging from 7.1 to 22.4 and from 0.21 to 1.4 g/kg 
for P concentrations. If a weight loss during abscission of 28% (see above) is 
assumed, reabsorption efficiency would range from 49 - 36% N and 62 - 50% P 
from low to high fertility level, that is a trend opposite to the one suggested by 
Chapin III (1980). 

Lajtha (1987) cites various authors who have found decreasing reabsorption effi­
ciency with increasing nutrient availability, and various others who have found no 

such relation or the reverse. She argues that 'Previous workers may have reached 
contradictory interpretations regarding the response of plants to nutrient stress 
because the status of experimental sites along the full gradient of nutrient availability 
was unknown'. She suggests a model of the relationship between nutrient availability 
and nutrient reabsorption efficiency (Fig. II.13). At low nutrient availability the 
absolute amount of nutrients available for reabsorption is limited, because less 
soluble and/or hydrolyzable compounds containing the nutrient are present, 

whereas in more fertile sites the cost of reabsorbing a nutrient may exceed the cost 
of nutrient uptake by the roots. 

The values for the reabsorption efficiency found by Vitousek & Sanford (1986) were 
plotted against the corresponding nutrient concentration in the living leaves (Table 

II.9, Fig. II.14: dots) together with the ranges calculated above (Fig. II.14: crosses).

Figure II.14 shows that the values calculated by these authors agree with the ranges 
estimated above and that the model suggested by Lajtha (1987) as represented by 
the solid lines a and b, and the dotted lines possibly applies. The dotted lines were 
arrived at as follows. 

According to Chapin III (1980), 10% of the maximum content of N and P in the 
leaves of natural vegetation cannot be redistributed, i.e. about 0.1- 25 = 2.5 g/kg 
N and 0.1- 2 = 0.2 g/kg P in forest leaves. The data ofVitousek (1982, 1984) suggest 
minimum concentrations in leaflitter of7.1 and 0.21 g/kg for N and P, respectively. 
Assuming a weight loss of 28% during abscission, this means the N and P con-
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centration in litter, expressed as mass fraction of the original leaf dry matter, would 
be 7.1- 0.72 = 5.1 g/kg for N and 0.21- 0.72 = 0.15 g/kg for P. When these fractions 
are compared with the theoretical ones from above, derived from Chapin III (1980), 

it appears that tropical forests redistribute P more efficiently than N. If it is assumed 
that all N or P above the minimum concentrations expressed on the basis of original 
weight (5.1 and 0.15 g/kg for N and P, respectively) can be redistributed, the dotted 
lines of Fig. II.14 are the result. 

Table II.9 Foliar N and P concentration (g/kg) and reabsorption efficiency (%), and N-P ratio of 
the redistributed material. After Vitousek & Sanford (1986). If indicated by*, after 
FOlster et al. (1976) 

Site Concentration Reabsorption N/P 
efficiency 

N p N p 

Moderately fertile 
Ghana 25.2 1.4 36 51 2.7 
Infertile Oxisol/Ultisol 
Colombia* 17.6 0.8 54 73 16.4 
Spodosols/Psamments 
Venezuela, San Carlos 17.8 0.6 42 67 18.6 
Venezuela, Caatinga 10.8 0.7 55 50 17.0 
Venezuela, Open Bana 8.9 0.4 44 56 17.5 
Montane 
Venezuela 17.4 0.8 40 32 27.2 
Papua N.G. 12.1 0.8 6 23 3.9 

Medina (1984) calculated reabsorption efficiencies of 48 % and 66 % for N and P, 
respectively, in Amazonian forests, based on the difference between maximum leaf 
content and content in newly fallen leaves, so without considering weight loss. If a 
weight loss of 28 % is assumed these numbers would be 63 and 76 % for N and P. 
However, if Medina's calculation is based on the highest possible contents during 
the leaf life span, it does not take into account the likely increase in specific leaf 
mass after the moment this highest content was reached, implying that the latter 

numbers are overestimates. 

Maximum reabsorption efficiency probably varies between 50 and 60 % for N and 
between 60 and 70 % for P. Foliar N concentrations generally vary between 10 and 
17.5 g/kg and P concentrations between 0.4 and 0.8 g/kg for amazonian forests 
(Appendix II.la). Therefore the data in Fig. II.14 were interpreted in two ways as 

represented by solid line a (lower estimates for the maximum) and solid line b 
(highest estimates for the maximum). 
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Fig. II.13 

Fig. II.14 

nutrient reabsorption efficiency 

absolute amount of 
reabsorption limited 

eff1oency declines as nutrient becomes 
less limiting to plant growth 

nutrient availability or plant nutrient status 

A model of the relationship between nutrient availability and nutrient reabsorption 
efficiency. Source: Lajtha (1987). 

retranslocation fraction of N 

0.6 

0.4 

0.2 

Relation between leaf reabsorption efficiency and foliar concentration for N (above) 
and P (below). Data from Table II.9, ranges calculated in text from data of Vitousek 
(1982, 1984) are indicated by x. For further comment on dotted and solid lines a and 
b, see Section 6.2. 
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6.3 Implications for the model 

In the model N and P reabsorption efficiencies are calculated as a function of N 
and P concentration in the leaves according to the dotted curves and lines b of Fig. 

II.14: 

FLRDUN = MIN [ (LEAFCN - 5.1)/LEAFCN, 085-0.02 LEAFCN] 

FLRDUp = MIN [(LEAFCp - 0.15)/LEAFCp, 0.79-0.17 LEAFCp] 

where: 
FLRDUN = reduction fraction of N in leaves before leaf fall 

FLRDUp = reduction fraction of P in leaves before leaf fall 
LEAFCN = foliar N concentration, g/kg 
LEAFCp = foliar P concentration, g/kg 
MIN [a,b] =the minimum of a and b. 
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7 SPECIFIC LEAF AREA AND LEAF LIFE SPAN 

7.1 Introduction 

Mean specific leaf area (SLA) and leaf life span of tropical forests depend on species 
composition. Evergreen species tend to have low specific leaf area (below 5 m2 kg-1)
and high leaf life span (up to  1.25 year), whereas deciduous species generally have 
a much higher specific leaf area (10 - 20 m2 kg;l) and shorter life span (0.25 - 0.75
year) (Medina, 1984; Mooney et al., 1984; Longman & Jenik, 1987). 

Predominance of evergreen species can be seen as an adaptive strategy to nutrient 
stress, as it increases residence times of nutrients in the organs that determine 

growth. Thick leaves, i.e. low SLA, are needed under such circumstances to resist 
herbivory. Deciduous species are more abundant in dry forests than in wet forests. 
They generally drop their leaves at the beginning of the dry season. This can be 
seen as an adaptation to moisture stress as a lower leaf area lowers the transpiration. 
This seasonality in leaf area implies lower residence time of leaf biomass and 
nutrients and thus less need to resist herbivory. Moreover, as the growing season 

is shorter, the vegetation has to take maximum advantage of light, water and 
nutrients during the rainy season. Thinner leaves, i.e. relatively high SLA, may 
therefore be expected in these dry forests. On the other hand, sclerophylly, i.e. low 
SLA, may sometimes be an adaptation to very dry climates. Therefore it is hard to 
predict how the interaction of nutrient and moisture stress works out. Yet, it is 
probable that SLA is low and leaflife span is high under conditions where nutrients, 
and not moisture are limiting production. If moisture becomes more limiting, an 
increasing SLA and decreasing leaf life span may be expected as a r esult of an 
increasing proportion of deciduous species. It is assumed that the situation where 
SLA tends to decrease again as a result of severe moisture stress (sclerophylly) is 
not relevant for the humid tropical forests we concentrate on. 

7.2 Specific leaf area and nutrient status 

Figure II.15 that shows there is a positive relation between SLA and N concentration 
in leaves for tropical forests. A similar relationship was found between SLA and P 
concentration. 
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Fig. II.15 
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Relation between mean specific leaf area of tropical forests and nitrogen concentration 
of leaves. Data from Medina (1984) and Mooney et al. (1984): XA = amazonian, XD = 
dry, XM = montane and xs = semi-deciduous forest. Solid line: linear regression line 
excluding dry forests from analysis; dotted line: including dry forests. 

Although the linear correlation coefficient is higher for N than for P (see Table 
II.10), it appears that both influence SLA. The lowest SLA value (3.6 m2 /kg) was
recorded for an evergreen tropical forest which included sclerophyllous species and 
which was classified as very dry by Marin & Medina (1981). The same authors 
reported the highest value in Fig. II.15 (12.7 m2 /kg) for dry deciduous forest. The
relatively low SLA value 8.3 m2 /kg at 21 g/kg of N in leaves for a montane forest
may be explained by low P concentration of the leaves. Applying the linear regression 
equation for P, a SLA of about 6 m2 /kg would be estimated there.

7.3 Leaf life span 

The most important factor in leaf fall seasonality is moisture stress, but low light 
intensities may also play a role (Longman & Jenik, 1987). As nutrient stress 
influences species composition in the way described in Section 7.1, long leaf life 
span may be expected at low nutrient concentrations in the leaves and shorter life 
span at high nutrient status of the vegetation. Based on the descriptions of Longman 
& J enik (1987) and Medina (1984), a leaflife span range of0.5 - 1.25 year, depending 
on nutrient status of the vegetation, seems reasonable in forests with little moisture 
stress. 
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7.4 Implications for the model 

It is concluded that SLA may be calculated as functions of N and P concentrations 
in leaves if the forest is not too dry. The linear regression equations that were found 

excluding dry forests are be used in the model to predict SLA by averaging the 
estimates derived from N and P concentrations in leaves (Table II.10). 

Table II.10 Linear regression equations for relationships between specific leaf area (SLA, m2 /kg)
and foliar N concentration (LEAFCN, g/kg) and that between SLA and foliar P 
concentration (LEAFCp, g/kg)in tropical forests. Data from Medina (1984) and 
Mooney et al. (1984) 

Equation R2 Dry forests 

SLA = 0.56 + 0.508 LEAFCN 0.67 included 
SLA = 1.99 + 0.405 LEAFCN 0.64 excluded 
SLA = 2.22 + 6.632 LEAFCp 0.62 included 
SLA = 2.51 + 6.804 LEAFCp 0.50 excluded 

For leaf life span it is assumed that the highest nutrient dependent value, being 1.25 
years, holds if the concentration of any nutrient is low. Leaf life span is assumed to 
be 0.5 year if the concentrations of all nutrients are high. 

To account for smaller life spans due to moisture and light stress, a treatment 
analogous to the one in the crop growth model WOFOST is proposed (Van Diepen 
et al., 1988). It is implicitly assumed here that leaf life span and relative leaf fall rate 
are each others reciprocal. In WOFOST, both the maximum relative leaf fall rate 
due to moisture stress and that due to light stress are 0.03 day-1, three times the 
relative leaf fall rate due to ageing of arable crops like cassava, at 27 °C. Applying 
the same factor to the leaf fall rate in forests leads to the calculation scheme of 
Table II.11. Note that the multiplication factors fLAr and fMs do not function until 
they pass unity. The phenomenon that in case of moisture or light stress oldest 
leaves are shed first, is in this way indirectly accounted for. 
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Table II.11 

RRLFA 
RRLFi 
RRLFN 
RRLFp 
RRLFK 
fLAI 
fMS 

RRLFA 
RRLFN 
RRLFp 
RRLFK 
LEAFCN 
LEAFCp 
LEAFCK 
fLAI 
LAI 
LAicr
fMS 
Tpot 
Tact 

Calculation of relative leaf fall rate of leaves in the model, as a function of LAI, moisture 
stress and nutrient status 

= MINIM (RR.FLj) · MAXIMUM (1,fLAI,fMs) 
= RRLFN for RRLFp or RRLFK 
= 0.8 < 0.8 + 1.2 · (LEAFCN-10)/10<2.0 
= 0.8 < 0.8 + 1.2 · (LEACp -0.5)< 2.0 
= 0.8 < 0.8 (LEAFCK - 5)/10 <2.0 
= 0 < 3 (LAI - LAicr)/LAicr < 3 
= 0 < 3 (Tpot -Tact)/Tpot < 3 

= relative rate of leaf fall (1/yr) 
= relative rate of leaf fall as determined by nitrogen only (yr) 
= relative rate of leaf fall as determined by phosphorus only (1/yr) 
= relative rate of leaf fall as determined by potassium only (1/yr) 
= nitrogen concentration in leaves (g/kg) 
= phosphorus concentration in leaves (g/kg) 
= potassium concentrations in leaves (g/kg) 
= multiplication factor for high LAI (light stress) 
= leaf area index (ha(leaf) per ha (ground surface)) 
= critical LAI, which is about 4.0 in WOFOST 
= multiplication factor for moisture stress 
= potential transpiration in the period considered (mm) 
= actual transpiration rate in the period considered (mm) 
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APPENDIX H.1 Foliar nutrient concentrations and ratios for 

various moist tropical forests arranged by soil fertility 

After Vitousek & Sanford (1986) unless indicated othetwise (superscript numbers refer to 

reference list at the end of Appendix II.7). 

Concentrations (g/kg) 

Site N p K Ca Mg 

Moderately fertile soils 
Panama 1.5 15.3 22.9 2.6 

Ghana, Kumasi 25.2 1.4 8.5 15.4 4.8 
Venezuela2b 23.9 1.9 16.9 14.0 4.6 
New Britain 20.8 1.5 16.7 20.4 3.0 

Zaire, Yangambi 24.5 1.2 19.2 7.0 8.8 

Montane sites 
Venezuela-cloud forest 11.7 0.8 5.5 8.7 2.6 

-montane forest3 16.4 1.1 12.5 4.6 2.4 
Puerto Rico-lower montane4 11.6 0.7 6.7 5.5 2.0 

-elfin forest 9.9 0.6 5.1 6.7 1.6 
New Guinea-lower montane6 13.2 0.9 7.7 15.0 3.1 
Hawaii 6.1 0.8 6.1 7.9 1.8 
Jamaica-mull7 14.5 0.7 9.3 9.1 3.7 

-mor7 9.7 0.5 4.2 5.9 2.7 

Infertile oxisol/ultisol 
Venezuela 12.7 0.6 4.6 1.9 1.0 
Venezuela-San Carlos 17.8 0.6 3.8 1.1 1.1 
Brazil 18.4 0.5 5.0 4.2 2.9 
Colombia-terracell,b 17.6 0.8 5.2 3.6 1.8 

Sl<QQosols{Psamments 
Venezuela-caatingae 11.6 0.7 6.2 4.4 1.5 

-caatingae 10.8 0.6 5.8 5.3 3.6 
-banaf 7.4 0.5 6.4 5.8 1.4 
-tall banaf 10.3 0.9 6.8 4.6 2.6 
-low banaf 12.9 1.2 7.2 10.3 2.5 
-open banaf 8.9 0.4 5.5 6.4 2.2 

Brazil-campinag 11.1 0.5 6.6 3.7 2.6 
-igap612,h 17.3 0.6 6.3 2.5 1.2 

Malaysia 8.7 0.2 3.5 7.5 2.0 
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Appendix II.1 continued 

Ratios 

Site N/P 

Moderately fertile soils 
Panama 
Ghana, Kumasi 18.0 
VenezueJa2b 12.6 
New Britain 13.9 

Zaire, Yangambi 20.4 

Montane sites 
Venezuela-cloud forest 14.6 

-montane forest3 14.9 
Puerto Rico-lower montane4 16.0 

-elfin forest 16.5 
New Guinea-lower montane6 14.7 
Hawaii 7.6 
Jamaica-mull? 20.7 

-mor7 19.4 

Infertile oxisol [ultisol 
Venezuela 21.2 
Venezuela-San Carlos 29.7 
Brazil 36.8 
Coiombia-terracell,b 22.0 

S12Qdosols[Psamments 
Venezuela-caatingae 16.6 

-caatingae 18.0 
-banaf 14.8 
-tall banaf 11.4 
-low banaf 10.8 
-open banaf 22.3 

Brazil-campinag 22.2 
-igap612,h 28.8 

Malaysia 43.5 

a Average weighted by D2H-stratum x number of trees. 

P/K K/N 

0.098 
0.165 0.34 
0.112 0.71 
0.090 0.80 
0.063 0.78 

0.146 0.47 
0.088 0.76 
0.105 0.58 
0.118 0.52 
0.117 0.58 
0.131 1.00 
O.o?5 0.64 
0.119 0.43 

0.130 0.36 
0.158 0.21 
0.100 0.27 
0.154 0.29 

0.113 0.53 
0.103 0.54 
0.078 0.86 
0.132 0.66 
0.167 0.56 
0.073 0.62 
0.076 0.59 
0.095 0.36 
0.057 0.40 

b Average weighted by proportion of distinghuished vegetation components. 
c Cverstorey trees only. 
d Average value of two forests. 
e Sandy soil, occasionally flooded, tall vegetation. 

i:KCaMg/N 

1.14 
1.49 
1.93 
1.43 

1.44 
1.19 
1.17 
1.35 
1.95 
2.59 
1.52 
1.32 

0.59 
0.34 

0.66 
0.60 

1.04 
1.36 

1.84 
1.36 
1.55 
1.58 
1.16 
1.73 
1.49 

f Sandy soil on higher ground, seasonally high water table, lower-stature vegetation. 

g Sandy soil on high ground, low stature vegetation. 
h Inundation forest, nutrient-poor black water. 

18-year old forest. 
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APPENDIX H.2 Nutrient concentrations (g/kg) in twigs, branches, 

bark, sapwood and heartwood for various moist tropical forests 

arranged by soil fertility 

After Vitousek & Sanford, (1986). Data are from original authors, as indicated by superscript number 
(see end of Appendix II.7; for superscript letters see end of Appendix II.1). Dots and arrows indicate 
the components a particular value refers to. If the boundary of a component was not clearly defined, 
the arrow has been omitted. 

Nutrient Site code Twigs Branches Bark Sapwood Heartwood 

N 1.1 
1.2 -- --- 3.2---- ---> 

1.3 -- --- 4.2- ------> 

1.4 8.7a 6.7C <--- 3.4ab_ ----> 

1.5 -- ---- 2.6-- -------> 

1.6 --- --- 2.7-- ----> 

2.1 3.6 <----- 2.0---- ------> 

2.2 3.5 <-- 1.6--- ------> 

2.3 8.2 2.4 5.4 <---- 1.2--> 

2.4 <---- 2.3-- -----> 

2.5 <--- 1.5---- ----> 

3.la 
3.2a 
3.3 7.6 3.7 <----- 4.1-- ---> 

4.1 9.4 <--- 3.1----> 

1 Moderately fertile soils. 3. Infertile oxisols/ultisols. 
1.1 Panama8cd. 3.la Venezuela-San Carlos9. 
1.2 Ghana, Kumasil. 3.2a BrazillO. 
1.3 Ghana, Kadelb. 3.3 Colombia-terracellb. 
1.4 Venezuela2. 
1.5 Zaire, Yangambili. 4. Spodosols/Psamments. 
1.6 Zairel. 4.1 Brazil-igap6 (swamp soil)12. 

2. Montane. 
2.1 Venezuela-montane3. 
2.2 Puerto-Rico-lower montane4. 
2.3 New Guinea-lower montane6. 
2.4 Jamaica-mull7. 
2.5 -mor (peat soil)7. 
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Appendix II.2 continued 

Nutrient Site code Twigs Branches Bark Sapwood Heartwood 

p 1.1 <----- 0.40--

1.2 ----- ----- 0.25---

1.3 - --- 0.26---

1.4 2.la uc <---- o.s1ab __ 

15 -- -- 0.5--

1.6 ---- ----- 0.3----

2.1 0.15 <---- 0.12--

2.2 0.25 <---- O.o7---

2.3 0.76 0.11 0.25 <----- 0.07----

2.4 <------ 0.11-

2.5 <----- 0.11--

3.la 0.42 0.20 0.11 0.o7 

3.2a 0.23 <----- 0.13--

3.3 0.28 0.14 <------ 0.12----

4.1 0.16 <---- 0.18--

K 1.1 <---- 9.0----- -------> 

1.2 --- ---- 3.0---- ----> 

1.3 --- ----- 2.5-- ----> 

1.4 9.9 4.2c <----- 4.oab __ -------> 

15 -- ---- 2.7-- -------> 

1.6 ---- --- 2.5-- -----> 

2.1 4.8 <--- 3.1--- ------> 

2.2 1.8 <------- 1.2-- -----> 

2.3 8.4 2.4 4.5 <------ 1.7---> 

2.4 <---- 2.3------ -----> 

2.5 <----- 1.0--- -------> 

3.1 2.4 2.4 0.85 0.56 

3.2 2.4 <---- 1.4---- -------> 

3.3 2.6 1.7 <--- 1.6--- --------> 

4.1 3.7 <------ 1.8---> 
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Appendix II.2 continued 

Nutrient Site code twigs branches bark sapwood heartwood 

Ca 1.1 <-------- 11.0---- ----> 

1.2 ---- -------- 3.1------ ------> 

1.3 --- -------- 5.8----- ------> 

1.4 11.0 8.2c <------ 8.oab __ -----> 

1.5 
1.6 ---- ------ 5.4---- ------> 

2.1 3.3 <------- 1.9----- -----> 

2.2 4.3 <------ 2.0---- -----> 

2.3 15.7 6.9 22.4 <------ 0.11---> 

2.4 <------ 2.6---- ------> 

2.5 <------ 1.4--- -----> 

3.1 1.7 2.2 0.26 0.25 
3.2 3.0 <---- 1.8--- -------> 

3.3 3.6 2.8 <--- 2.2--- -------> 

4.1 4.6 <---- 0.8----> 

Mg 1.1 <---- 1.2---- ------> 

1.2 -- ---- 1.5-- -------> 

1.3 ----- ------- 0.94-- ------> 

1.4 2.1 i.oc <---- 0.65ab ___ -------> 

1.5 
1.6 ----- ---- 0.9--- ------> 

2.1 0.78 <--- 0.54-- ------ > 

2.2 0.85 <---- 0.09-- ------> 

2.3 0.20 0.6 1.3 <----- 0.5----> 

2.4 <---- 0.5--- ------> 

2.5 <------ 0.6---- ----> 

3.1 0.76 0.53 0.17 0.21 
3.2 1.6 <---- 0.99--- ---> 

3.3 1.0 0.8 <----- 0.59----- --------> 

4.1 0.52 <------- 0.31---> 
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APPENDIX H.4 Nutrient concentrations (g/kg) in chinese cabbage 

as found in a pot experiment 

The treatment codes 0222, etc. refer to the levels of N, P, K, Mg, applied as inorganic fertilizers. The 
codes om, vm, k, and f refer to different fractions of pig manure. The codes + P K Mg, etc. refer to 
the nutrients applied as inorganic fertilizer in addition to the pig manure. Data from Rijkelijkhuizen 
(1987). 

Treatment N p K N/ P P/K K/ N 

0222 15.0 4.97 37.2 3.02 0.13 2.48 

1111 37.4 4.96 22.9 7.54 0.22 0.61 

1131 27.3 5.04 46.9 5.42 0.11 1.72 

1133 29.3 4.93 54.8 5.94 0.09 1.87 

1311 31.4 6.14 21.4 5.11 0.29 0.68 

1313 28.6 6.11 21.5 4.68 0.28 0.75 

1331 28.8 6.04 50.2 4.77 0.12 1.74 

1333 29.5 6.42 42.3 4.60 0.15 1.43 

2220 42.2 6.59 31.4 6.40 0.21 0.74 

2222 43.7 6.69 32.9 6.53 0.20 0.75 

2224 40.1 6.64 28.8 6.04 0.23 0.72 

2242 42.6 6.99 54.6 6.09 0.13 1.28 

2422 43.2 6.52 28.5 6.63 0.23 0.66 

3111 59.9 6.90 24.6 8.68 0.28 0.41 

3113 63.0 7.79 25.2 8.09 0.31 0.40 

3131 55.9 6.59 44.6 8.48 0.15 0.80 

3133 51.8 5.41 45.7 9.57 0.12 0.88 

3311 66.8 9.13 21.0 7.32 0.43 0.31 

3313 60.9 8.47 19.8 7.19 0.43 0.33 

3331 55.3 7.55 34.6 7.32 0.22 0.63 

3333 52.6 6.97 35.2 7.55 0.20 0.67 
4222 63.0 7.94 29.3 7.93 0.27 0.47 

om + PK Mg 22.4 6.25 48.4 3.58 0.13 2.16 
om + NK Mg 50.6 2.47 54.3 20.49 0.05 1.07 
om + N P Mg 63.5 8.38 18.0 7.58 0.47 0.28 

om + N PK 53.3 8.17 38.0 6.52 0.22 0.71 
vm + PK Mg 23.3 5.74 42.0 4.06 0.14 1.80 
vm + NK Mg 52.2 1.94 54.7 26.91 0.04 1.05 

vm + N P  Mg 66.1 10.35 19.1 6.39 0.54 0.29 
vm + N PK 54.1 7.30 40.4 7.41 0.18 0.75 
k + P K Mg 23.5 7.24 43.4 3.25 0.17 1.85 

k + NK Mg 54.8 6.03 49.0 9.09 0.12 0.89 
k + N P  Mg 64.0 8.80 18.3 7.27 0.48 0.29 
k + N PK 53.8 8.24 38.5 6.53 0.21 0.72 
f + PK Mg 30.5 6.25 55.2 4.88 0.11 1.81 
ea +  NK Mg 57.1 u1a 41.7 43.5� 0.03a 0.73 
f + N P  Mg 62.6 8.76 22.1 7.15 0.40 0.35 

f + N PK 53.8 6.65 43.0 8.09 0.15 0.80 

a Probably salt affected 
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APPENDIX n.s Uptake of nutrients by two-months old maize 

(above-ground + roots) in relation to the supplies 

All data in mg/ pot. Data derived from De Groof (1988). 

Supply Uptake 

N p K N p K 

340 7 215 57.1 4.88 63.0 
340 7 310 62.3 5.23 83.3 
340 7 405 117.1 7.65 156.7 
340 7 595 73.1 5.63 106.4 
340 7 975 n.a. n.a. n.a. 
340 23 215 152.8 9.97 135.1 
340 23 310 299.7 27.08 320.9 
340 23 405 131.0 8.97 209.9 
340 23 595 195.1 13.69 309.6 
340 22 975 243.0 20.00 482.4 
340 39 215 214.2 22.89 149.2 
340 39 310 228.7 20.38 238.6 
340 39 405 323.4 34.69 386.5 
340 39 595 245.8 25.74 368.5 
340 39 975 263.5 26.68 528.8 
340 72 215 274.6 33.51 171.2 
340 72 310 286.2 47.03 230.0 
340 72 405 280.6 46.38 318.3 
340 72 595 439.9 28.43 503.1 
340 72 975 257.3 39.90 596.5 
340 138 215 299.3 69.72 173.2 
340 138 310 294.5 69.16 272.2 
340 138 405 265.7 77.22 294.2 
340 138 595 264.1 65.46 414.0 
340 138 975 341.0 81.65 791.8 
840 7 215 47.1 2.38 50.2 
840 7 310 72.4 5.00 78.2 
840 7 405 68.3 4.89 75.7 
840 7 595 130.0 7.39 150.2 
840 7 975 63.3 2.40 106.2 
840 23 215 259.1 14.19 163.9 
840 23 310 169.8 8.99 204.1 
840 23 405 176.3 9.39 224.2 
840 23 595 195.6 10.37 259.9 
840 23 975 274.3 15.21 409.3 
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Appendix II5 continued 

Supply Uptake 

N p K N p K 

840 39 215 546.5 43.73 172.6 
840 39 310 597.6 37.04 265.2 
840 39 405 240.8 12.89 252.1 
840 39 595 453.8 27.23 447.0 
840 39 975 771.8 37.78 953.1 
840 72 215 868.3 89.61 232.7 
840 72 310 543.9 60.76 232.6 
840 72 405 647.9 51.05 267.6 
840 72 595 843.9 68.33 613.9 
840 72 975 746.8 70.13 801.9 
840 138 215 515.8 82.94 137.1 
840 138 310 970.7 149.85 356.7 
840 138 405 579.5 114.45 250.4 
840 138 595 873.6 130.67 621.8 
840 138 975 688.3 107.38 840.2 
1340 7 215 64.8 4.89 66.5 
1340 7 310 n.a. n.a. n.a. 
1340 7 405 98.1 5.77 107.3 
1340 7 595 72.0 4.89 78.1 
1340 7 975 70.4 4.57 725 
1340 23 215 188.5 9.35 139.7 
1340 23 310 258.4 12.48 242.6 
1340 23 405 192.6 11.39 223.0 
1340 23 595 n.a. n.a. n.a. 
1340 23 975 400.2 17.64 533.4 
1340 39 215 535.6 26.22 173.2 
1340 39 310 501.8 23.68 251.6 
1340 39 405 348.6 53.95 308.4 
1340 39 595 413.2 22.62 3835 
1340 39 975 500.6 26.92 535.5 
1340 72 215 793.7 51.51 191.1 
1340 72 310 826.9 59.48 221.4 
1340 72 405 1111.6 82.83 317.1 
1340 72 595 1297.1 93.53 666.2 
1340 72 975 670.3 45.85 654.7 
1340 138 215 928.2 95.66 169.4 
1340 138 310 1456.1 134.65 325.1 
1340 138 405 1250.7 127.54 371.0 
1340 138 595 940.6 79.67 434.9 
1340 138 975 1221.0 85.37 821.1 

a n.a. =not available because these plants were not analysed. 
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APPENDIX U.6 Uptake of nutrients by two-months old maize 

(above-ground + roots) in relation to the supplies 

All data are in mg per pot. Data derived from Scheltema (1989). 

Supply Uptake 

N p K N p K 

481 20 303 306.0 21.5 289.7 
481 20 468 297.0 21.5 375.7 
481 20 634 219.2 15.0 340.3 
481 1% 303 480.9 160.3 320.6 
481 196 468 382.3 146.4 406.7 
481 196 634 398.0 144.0 551.2 
481 372 303 481.8 225.8 301.1 
481 372 468 479.8 183.9 359.8 
481 372 634 664.3 263.8 781.6 
886 20 303 273.4 16.3 231.8 
886 20 468 272.7 14.9 320.4 
886 20 634 158.2 8.6 260.9 
886 196 303 773.1 163.2 264.4 
886 1% 468 779.7 135.6 443.6 
886 1% 634 1274.6a 150.1 599.5 
886 372 303 868.0 83.la 258.6 
886 372 468 916.7 248.9 425.0 
886 372 634 906.0 257.4 587.3 
1291 20 303 275.0 13.7 244.4 
1291 20 468 255.5 14.8 322.8 
1291 20 634 262.7 15.1 377.4 
1291 196 303 1316.2 198.3 270.4 
1291 196 468 1219.3 185.4 423.8 
1291 1% 634 1282.5 178.5 569.8 
1291 372 303 1137.8 264.2 284.4 
1291 372 468 1206.0 227.2 393.8 
1291 372 634 1420.1 258.9 668.2 

a These data were considered unreliable and therefore have not been used in the calculations for 
Fig. II.1 and Fig. II.2. 
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1 INTRODUCTION 

This part of the report describes in details the structure (Section 2) and process 
formulations (Section 3) of the model DYNAMITE. Background information on 

the main starting points underlying the model has already been presented in Part I, 

Section 1 of this report and also in Part II, section 1.2. 
The process formulations discussed in the Sections 3.1, 3.2 and 3.3 are derived or 
modified froin NUTCYC, the predecessor of DYNAMITE, and from other models. 
Process formulations in Section 3.4 are based mainly on relationships developed in 
Part II. 
Section 4 mentions the input data required to run the model. If such data are not 
available, estimated values have to be introduced. 
Section 5 points out how variations in the values of input parameters affect the 
outcomes of the moisture cycling sub-model. 
In Section 6 suggestions are made for modifications and possible extensions of the 
model. 
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2 MODEL STRUCTURE 

2.1 Discretization in time, depth and space 

For numerical analysis of the behaviour of a soil-vegetation system in time we have 
to discreticize the system. Discretization may lead to response artifacts. A well 
knmvn example is the numerical dispersion resulting from subdividing a soil column 
in discrete layers. This artifact, however, can be used to simulate physical dispersion 
resulting from molecular diffusion and hydrodynamic dispersion. Discretization in 
time will cause, amongst other effects, smoothing of irregularly distributed boundary 
fluxes like rainfall, temperature, erosion and atmospheric deposition of dust. The 
effect of discretization can be drastic and therefore should be included in a sensitivity 
analysis. Besides allowing numerical analysis, discretization in time and space may 
also be imposed by the level of detail by which input data are available. Especially 
with respect to studies in tropical regions, the time and depth grid in which model 
parameters may be collected often will be rather coarse. 

The present model uses a fixed time step that may vary from two weeks to one year. 
Smaller time steps are prefered when conditions for nutrient and moisture cycling 
are limiting forest development during specific, short-lasting periods within the year. 
The length of the time step will also depend on the purpose of the simulation 
experiment. For simulation of timber felling or burning a shorter time step has to 

be chosen than for the simulation of a long-term steady state in a tropical forest. 

The present model distinguishes one soil layer for nutrient uptake and two layers 
for water uptake. With respect to tropical forests on slopes, lateral transport of 
water, nutrients and soil material is very important, and lateral inputs from surface 
and subsurface runoff and erosion have to be considered. In the present model only 
vertical transport is considered, which limits the applicability. However, it is possible 
to modify the model for simulation of nutrient and moisture cycling in a sequence 
of soil profiles along a hill slope, similar to the concept of sub-catchments in the 
watershed acidification model ILWAS (Goldstein et al., 1984) . Subdivision of the 
system in more soil layers and the distinction of soil segments along the topose­
quence, will strongly increase simulation time and therefore of the model. 
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2.2 Chemical constituents and element pools 

Before describing the model formulations in detail, an overview is given of the 
chemical constituents, of the pools in which the constituents can occur and of the 

processes that can change these pools. 

In the model the following constituents are distinguished: 
- phosphorus 
- nitrogen 
- potassium 

- carbon 

and directly related to carbon: 
- dry matter 

Four vegetation components are distinguished: 

- leaf 
- wood 
- fine roots 
- coarse roots 

The primary organic pools, which are directly filled by vegetation die-back are: 
- leaf litter (forest floor leaves) 
- wood litter (forest floor wood) 
- fine root debris 
- coarse root debris. 

The following pools of soil inorganic matter are distinguished: 
stable organic matter 
moderately labile organic matter 
labile organic matter 

The following pools of soil inorganic matter are distinguished: 
- inert organic matter 
- stable inorganic matter 
- labile inorganic matter 
- adsorbed inorganic matter 
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Fig. III.1 Schematic representation of the processes incorporated in the model DYNAMITE. The 
numbers refer to: 

1 plant nutrient uptake from soil solution (SSOL) 
2 nutrient uptake in fine roots (FR) 
3 nutrient transport from fine roots to leaves (LEAF) 
4 nutrient transition from fine to coarse roots (CR) 
5 nutrient overflow from leaves to wood 
6 nutrient retranslocation from leaves to wood 
7 leaf fall 

8 wood fall 
9 coarse-root dying 

10 fine-root sloughing 
11  K leaching from forest-floor leaves (FFL) 
12 nutrient transfer from forest-floor leaves to organic labile pool (ORLA) 
13 nutrient transfer from forest-floor wood (FFW) to organic labile pool 
14 nutrient transfer from forest-floor wood to organic moderately labile pool 

(ORML) 
15 nutrient transfer from coarse-root debris (CRD) to organic labile pool 
16 nutrient transfer from coarse-root debris to organic moderately labile pool 
17 nutrient transfer from fine-root debris (FRD) to organic labile pool 
18 nutrient transfer from organic labile to organic moderately labile pool 
19 nutrient transfer from organic moderately labile to organic stable pool 

(ORST) 
20 mineralization of forest floor leaves 
21 mineralization of forest floor wood 
22 mineralization of coarse-root debris 
23 mineralization of fine-root debris 
24 mineralization of organic labile pool 
25 mineralization of organic moderately labile pool 
26 mineralization of organic stable pool 
27 wet deposition of N and K 
28 total dry deposition of P 
29 dry deposition of P to inorganic stable phosphorus (INSTP) 
30 dry deposition of P to inorganic inert phosphorus (ININP) 
31 transfer of P from inorganic stable to inorganic labile phosphorus (IJ\.'LAP) 
32 transfer of P from inorganic labile to inorganic stable phosphorus 
33 transfer of P from inorganic labile pool to soil solution 
34 desorption and adsorption of K 
35 leaching of nutrients from soil solution (SSOL) 
36 erosion of organic and inorganic nutrient pools 
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2.3 Process diagram and sequence of calculations 

In Figure III.1 a schematic view is given of the relationships between the various 
constituent pools and of the processes in a tropical forest ecosystem, as they are 
incorporated in the DYNAMITE model. 

The sequence of calculations before the start of the simulation is: 

1) Reading and echoing the input data. Initialization of output files.
2) Initialization of initial contents of organic element pools. Calculation of dissi­

milation constants.

The sequence of calculations during the simulations is: 

1) adjustment of three inorganic pools (inert, stable, labile) and the seven organic
pools; integration of major incoming, outgoing and internal element fluxes;
calculation of total element pools in soil, vegetation and forest floor;

2) calculation of element ratios in organic pools;

3) simulation of hydrology; calculation of transpiration, percolation and water
contents;

4) calculation of erosion fluxes;

5) calculation of atmospheric deposition fluxes;

6) calculation of mineral weathering fluxes;

7) calculation of dissimilation fluxes from and transfer fluxes between organic
pools;

8) separate calculation of dissimilation and transfer fluxes from the leaf litter
pool, which in contrast to other organic pools is divided into sub-pools of
different stability;

9) calculation of nutrient uptake by the plant, and growth of the different veg­
etation components;

10) solution of the overall mass balance equation, including linear adsorption.
Calculation of the leaching fluxes;

11) output of results to files.
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3 PROCESS FORMULATIONS 

The DYNAMITE model can be divided into a Moisture Cycling Model (or Water 
Balance Model) and a Nutrient Cycling Model. The discussion of the latter is split 
into sections on inorganic pools and fluxes, organic pools and fluxes, nutrient uptake 
and vegetation growth, litter fall and rooi: turnover. The two submodels are brought 
together in the section on chemical balance. 

3.1 Moisture Cycling Model 

3.1.1 Main characteristics of the used model

3.1.1.1 General description 

A moisture cycling model calculates evaporation and transpiration, soil water 
content and soil water flux. In the calculation of evaporation and transpiration, 
interception plays an important role. The interception sub-model used in DYNA­
MITE had to be calibrated first, and this is discussed in Section 3.1.1.2. 

There are two major types of models for water flows in the soil. On the one hand, 
there are deterministic models based on the Darcy flow equation and the continuity 
equation, where water transport is driven by the depth gradient of the moisture 
potential. On the other hand, there are empirical box models where flows to and 
from a box are determined by the water content. Darcy models require detailed 
information with respect to hydraulic properties. The measurement of hydraulic 
properties is tedious. The application of hydraulic functions derived from small 
columns in the laboratory to the field is a matter of debate. Box models require 
only some characteristic water contents and a maximum percolation rate, and 
therefore appear to be more suitable for application to tropical regions, where there 
is limited opportunity to collect hydraulic data. We adapted a box model as used in 
the ILWAS model (Goldstein & Chen, 1983), to incorporate capillary rise, which 
may be an important source of water in tropical regions. 
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Fig . III.2 Schematic re presentation of the water balance sub -model in DYNAMITE.

3.1.1.2 Calibration of the interception sub-model 

In the presence of a vegetation only part of the precipitation will infiltrate into the 
soil due to direct interception by leaves and evaporation from the leaves (Fig. III.2). 
An excellent review of the interception process and interception models is given by 
Van Roestel (1984)to which one is refcred to. 
In our study, the empirical relationships by Jackson (1975) were applied to scarce 
monthly interception data of the Tai' region, Ivory Coast (Collinet et al., 1984): 

la = a +  b
·
P [III.l] 

la = a + b · P + c · p2 [III.2] 

la = a +  b · lnP [III.3] 

where la is Interception and P is Precipitation.
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All models were roughly equally suitable to fit the annual interception but differ­
ences between predicted monthly values and observations of 30 -50 % are common 
(Fig. III.3). These differences are caused by the variation of precipitation intensity 
and evaporative demand per event which are not taken into account. The square 
of the correlation coefficient between observed and predicted monthly interception 
for all three Jackson's models is about 0 .65. 
The empirical interception model by Bultot et al. (1976) includes the effects of 
rainfall intensity and evaporative demand. We modified his equation a little, yielding: 

Ia = (a· P2 + b · P) (20av/(Q + Oav)) c · E pan · (1-e0.4.lAI)

where: 
P = precipitation (mm/day) 

[III.4] 

Q = average precipitation intensity on days with rain during the time step in 
the model (mm/day) 

Oav = average precipitation intensity on days with rain during the whole simu-
lation period ( = > time step) (mm/day)

E pan = pan evaporation (mm/day)
LAI = leaf area index (ha/ha)
e = base of natural logarithm (2.718) 
a,b,c = regression coefficients 
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The model by Bultot et al. originally uses daily time steps. Before use, the model 
should be calibrated to experimental data for larger time steps. The model can be 
seen as a refinement of Jackson's parabolic model (Equation III.2 with a=O, Fig. 
III.4). The correction term for precipitation intensity, 20av/(Q + Oav) tells that
intenception will be enhanced if Q < av • and interception will be reduced, if Q > Oav·

The correction factor for "Epan is c. For Epan,av • which is the average Eiia m c • "Epan 
should be 1, so c = 1/"Epan,av ·  Predicted la should approach P for increasing 'Epan 
and decreasing Q. However, in the Bultot model there is no upper limit for Ia.
In Equation III.4, interception is also corrected for variation in LAI, by multiplying 
with the factor 1-exp (0.4 LAI), in accordance with Equation III.10 for soil evap­
oration. The correction for LAI was necessary to reduce interception after (partial) 
clear cutting. 

The values for a en b can be obtained by fitting the model to field data of la , P, Q 
and "Epan· If such data are not available, two realistic combinations of la , P, Q and
Epan may be estimated in order to provide two equations for solution of a and b.
The choice of the combinations is then somewhat arbitrary. The shape of the 
resulting relationship between Ia and P should be similar to that in Fig. III.4. 

In this study one set of data was available from Tai', Cote d'Ivoire (Table III.2). 
They are used to illustrate the procedure. The months January and September are 
taken as examples of a dry and a wet situation, respectively. The value of Oav is 
found as L:RRP::DA YWR, being 1832/134 = 13.67. The value of LAI is assumed 
to be 6 ha/ha, so (1 - exp (0.4 LAI)) is 0.9093. Collinet et al. (1984) found that 
interception varies between 25% (dry periods) and 10% (wet periods). Substition 
of these values and the relevant data from Table III.2 in Equation III.4 results in 
the following equations for the months January and September, respectively 

0.25 · 21 = (a · 212 + b · 21) (2 · 13.67 /(21/14 + 13.67)(110/104.5) · 0.9093 
[IIl.S] 

0.10 · 293 = (a· 2932 + b · 293) (2 · 13.67 /(293/12 + 13.67)(82/104.5) · 0.9093 
[III.6] 

Equations III.5 and III.6 yield: a = 5.3214 10-5, and b = 0.17959 
It was not possible to validate the Bultot model for the Tai' forest. The data set from 
Collinet et al. (1984), used to fit Jackson's models, did not include pan evaporation
and rainfall intensity, which are required for application of Bultot's model. Bultot's 
model was provisionally validated using another data set for Ta! forest (Fig. III.5) 
including rainfall intensity and pan evaporation but lacking interception observa­
tions (Casenave et al., 1980). The discrepancy between interception predicted by 
the parabolic model and observed interception (Fig. III4) is of similar magnitude 
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as the discrepancy between predicted interception by the parabolic model and 
Bultot's model (Fig. III.6). This similarity qualitatively supports the corrections 
made in Bultot's interception model for variation of monthly evaporation and 
average rainfall intensity. 

3.1.2 Flow scheme and sequence of cakulations 

Like others, the present Moisture Cycling Model calculates the actual transpiration, 
soil water content and soil water flux. Groundwater is not yet considered. The 
dynamic effect of the nutrient cycling model on the moisture cycling model results 
from the relationship between potential transpiration and leaf area index (LAI). 
Dynamic effects of the moisture cycling model on the nutrient cycling model are 
various: the soil water flux determines the solute flux, the transpiration rate may 
limit the vegetation grmvth and hence affect the nutrient distribution in the plants, 
and the soil water content can limit nutrient uptake. The time steps and soil-layer 
thicknesses for the moisture cycling and nutrient cycling model are not necessarily 
the same. 

The sequence of calculations (Fig. III.2) for the Water Balance Model is: 

l) reading of precipitation and potential evapotranspiration, number and thick­
ness of soil layers, soil water characteristics, initial water contents for every
soil layer and water uptake distribution with depth;

2) copying of the LAI (total leaf area/land area) calculated in the nutrient cycling
model;

3) calculation of the interception losses and correction of the evaporative demand
from soil and vegetation;

4) distribution of corrected evapotranspiration over potential soil evaporation
and transpiration according to the LAI;

5) calculation of the soil water content below which reduction of water uptake
by roots will start;

6) calculation of actual soil evaporation;
7) calculation of infiltration and ponding;
8) calculation of the new water content, water uptake by the vegetation and soil

water flux;
9) calculation of "back flow" of water if the soil compartment is saturated and the

infiltration is higher than the maximum percolation. This surplus of water will
infiltrate in the next time step;

10) averaging and summation of hydrologic parameters for the nutrient cycling
model.
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3.1.3 Tbe water balance equation

A general formulation of the water balance per time step is: 

8 2 = ( 8 1 • D + ( 1 in - 1 out - E act - W act) ID

where: 

[III.7] 

e 1 water volume fraction at the beginning of the time step ( mm3 /mm3) 

e 2 water volume fraction at the end of the time step ( mm3 / mm3) 
D thickness of soil layer (mm) 
J in incoming and outgoing water flux (mm) 
Eac t actual soil evaporation (mm) 

lou t outflow water flux (mm) 
Wac t actual water uptake flux (mm) 

Equation IU.7 is solved implicitly in time for every soil layer (See Section 3.1.7). Jin 
is a boundary condition. Both the soil water flux and the actual water uptake by 
roots (sink) are continuous functions of the soil water content. The flux and sink 
functions are characterised only by the, soil specific, characteristic water volume 
fractions at saturation (pF = 0), field capacity (pF =2) and wilting point (pF = 4.2). 
In general, data on these characteristic water contents are easily available, which 
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makes the water balance model more easily applicable than models based on the 
Darcy equation. The soil water flux and water uptake functions in Equation III.7 
are solved for the mean of the soil water volume fraction at the end of the previous 
( e 1 ) and the present time step (El 2) , the latter being unknown. An implicit solution
method for the new water content allows the use of larger time steps than an explicit 
solution method. The use of large time steps may be necessary when input data are 
scarce, or to reduce computation time. 

3.1.4 Precipitation, evapotranspiration, interception 

Precipitation 

Precipitation is an input parameter. In mosts cases precipitation data will be 
available on a daily basis. Simulation of hydrology with time steps longer than one 
day will smooth water availability, and will usually result in a more efficient water 
use by the vegetation than simulation with time steps of one day. 
Because of interception by the vegetation only part of the precipitation will reach 
the soil. The water input flux after passage of the canopy is called throughfall.

Potential evapotranspiration 

The basic input variable for calculation of evapotranspiration is the open water 
evaporation Eo or Pan evaporation (Epan), which may be known for the specific 
location or can be calculated by empirical or deterministic models (Thornthwaite 
and Holzman, 1939; Penman, 1948). E0 or Epan is transformed to the sum of 
evaporative demand for vegetation and soil (ETpot' in mm/yr) by means of an
empirical crop factor: 

[III.8] 

Next, the ET pot' will be reduced for the part of the evaporative demand which is
satisfied by direct evaporation from the canopy (Ei)· This amount of water may be 
measured as the difference between precipitation and throughfall or may be esti­
mated from an interception model (Section 3.1.1.2). The reduction is generally less 
than proportional (Singh and Sceisz, 1979), because part of the energy required for 
Ei is obtained from stored sensible heat in the forest and heat advection from the 
surrounding area. 

[III.9] 

with 0 < f1 < 1

Next, ET pot is distributed over potential soil evaporation (Epot) and potential
transpiration (Tpot) according to the Leaf Area Index (LAI) (Driessen, 1986):
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Epot = ET pot · exp (-0.4 · LAI) [III.10] 

T pot = ET pot - Epot [III.11] 

See Section 3.4.3.2 for calculation of LAI. 

Interception 

In Section 3.1.1.2 it is explained that interception is calculated as a function of 
rainfall, rainfall intensity during the time step and during the whole simulation 
period, pan evaporation and leaf area index (Equation III.4). 

3.1.5 Infiltration, percolation and capillary rise

As indicated in Section 3.1.1.1, a box model incorporating capillary rise is used for 
the water flux in the soil. Capillary rise is the upward flow from a saturated or from 
a wet but still unsaturated soil compartment. 

The water flow rate ( J e ) is calculated per time step by:

eae 
- b 

la= Jcrb-1 

where: 
Jcr = maximum capillary rise (mm) 

b = e
aerc 

E> re = water volume fraction at field capacity
a = constant 

[III.12] 

Values of J er and a depend on soil texture and organic matter content. Some typical
values are given in Table III.1. Equation III.12 predicts a negative upward flow 
(capillary rise) for e < er c and a positive downward flow (drainage) for e > er c • 

There is no flow when e = El re (Fig. III.7). Water flows from or to a soil layer,
predicted by Eq. III.12, are a continuous function of e in this soil layer only. In
other words, Eq. III.12 assumes that both drainage from and capillary rise to a soil 
layer are not limited by e in the underlying layer. The value of a is obtained by
non-linear optimization, using estimates of the maximum rates of capillary rise and 
percolation for input. If there is evidence that this assumption leads to large errors 
of predicted water fluxes, Eq. III.12 may be multiplied with a term, a , including 
e in the underlying layer, e.g. of the type:

[III.13] 
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where: 
El. = El at saturation for underlying layer

f3 = sensitivity (0.01-0.1) 

The value of a will be close to 1, except near e = 0, where a will be forced to a
value of 0, thus blocking capillary rise in case the underlying layer is too dry. 

If the throughfall flux in a time step is larger than J er of the surface layer, surface

storage (or ponding) will occur. This amount of water becomes available for infil­
tration in the next time step. 

3.1.6 Water uptake by vegetation and soil evaporation 

The transpirative demand (Equation III.11) is distributed over the soil layers 
according to the root water uptake distribution: 

where: 
Wpot,j 
WUFj 

= potential water uptake by roots in soil layer j (mm/yr) 
= water uptake fraction for roots in soil layer j (mm/yr) 

[ I II . 1 4 ] 

As a first approximation, WUF may set equal to the distribution of fine roots. 
The actual uptake of water by roots from a soil layer, (W actj) is calculated by:

Wact.j = S · Wpot.j 

where: S = Sink term; 0:::; SS 1 

S is a continuous function of e : 

S= 
1

1 +a. e -b(es-e) l +a·e-ce

where: a, b, c = constants 

[ I I I .IS]  

[ I I I . 1 6 ] 

S is a bell-shaped curve (Fig. III.8), which is forced through four points: 
Sas= 0, Sce,-dl = 1 , Ser= 1 , Sewp = 0. 8s is 8 at saturation, Elr is 8

below which water uptake by roots is reduced due to drought, El w P is El at wilting
point. The d is minimum volumetric soil gas fraction required for optimum res-
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Table IIl.1 Values for maximum capillary rise (Jcr) and the constant a of Equation IIl.12.

Horizon Texture 1cr (mm/day) a 

surface sand 0.54 42.8 
loamy sand 1.84 44.5 
clay loam 0.43 69.4 

subsoil sand 0.29 45.7 
loamy sand 2.02 51.7 
clay loam 0.73 66.2 
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piration of roots. The values of a, b, c are obtained by non-linear fitting. In
accordance with the Sink Term concept of Feddes (1978), 8, is a function of 8rc 
and the transpiration demand, T pot • 

[III.17] 

The parameter o is discontinuous function of the transpirative demand (Driessen,
1986). For forests the following functions were selected. 

C5 == 0.30 for Tpot > 10 (mm/d)

(J == 3/Tpot for 6 <  Tpot < 10 

(J == 0.9 - 0.1 (T pot - 2) for 2 < Tpot < 6 [III.18] 

(J == 0.9 for Tpot < 2 

As e, is a function of T pot> the parameters of Eq. II.15 have to be modified during

the simulation each time T pot changes.

The actual transpiration is the sum of actual water uptake for all depths: 

The actual soil evaporation (Eact) is a function of 8 in the surface layer: 

with e ad == the water content after air drying

3.1.7 Solution of water balance

[III.19] 

[III.20] 

For solution of the new values of e , the equation for Jin, Jout, and Wact are
substituted in the relaxed water balance equation (Eq. III.7): 

(81-82)D+Jin-Jout02-Wacte2== 0 [III.21] 

from which e 2 is solved numerically by the Newton Raphson technique (Press et

al., 1986). 

For the surface layer, Jin is equal to: 

[III.22] 
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For the subsurface layers Jin is equal to Jout from the overlying layer. 

Jout is substituted by Eq. III.12 and Wact is substituted by Eq. III.14. Both J0ut and 
Wact are a function of unknown e 2• As the formulations of I out and Wact are highly
non-linear, and because the change of 8 within one time step may be considerable, 
the argument ( e ' ) of J out and W act is not e 2 but the arithmetical mean of e 1 

and 82: 

e, = o.s (8  1 + e 2) [III.23] 
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3.2 Inorganic pools and fluxes 

3.2.1 Atmospheric deposition

Atmospheric deposition is the sum of wet and dry atmospheric deposition. Wet 
deposition is direct element input via precipitation. Sea spray may contribute 
substantially to wet deposition depending on the distance from the sea, and pre­
vailing wind directions. Dry deposition is atmospheric input of gases and particles 
to soil and canopy. Deposition of dust from arid regions or volcanoes may be an 
important source of phosphorus and potassium. Contrary to wet deposition and dry 
deposition of gases, deposition of dust generally supplies elements in a form poorly 
available to plants. In the model only total atmospheric deposition is considered, 
which is assumed to be constant within the year. Hence: 

where: 
RDEPi 
ARDEPi 
n 

= rate of deposition of substance i (kg/ha per time step) 
= annual rate of deposition of i (kg/ha per year) 
= number of time steps per year 

[ I I I . 24 ]  

Atmospheric deposition i s  considered for phosphorus, nitrogen and potassium (Fig. 
III.1: Flow 27 and 28).

3.2.2 Erosion 

Erosion is considered for all organic and inorganic element pools. The rate of 
erosion is mode led as a first order process. The rate constant may vary for different 
pools: 

where: 
REROSk 
POOLk 
FERk 
RREROSk 
CJt 

= 1 - exp ((-RREROSJ · o t)

= rate of erosion for pool k (kg ha·l per year) 
= size of pool k (kg/ha) 
= erosion fraction of pool k per time step 
= relative erosion rate of pool k (1/yr) 
= time step (yr) 
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3.2.3 Mineral Weathering 

Mineral weathering is considered for P and K. With respect to P, an inert, a stable 
and a labile inorganic solid phase pool are distinguished (Fig. III.1). Only the labile 
pool can supply P to solution according to first order kinetics (Flow 33). The primary 
source of P in the system is atmospheric deposition (Flow 28), which is directed
through the stable pool (Flow 29), to resupply the labile pool (Flow 31). There is 
also a transfer flux from the labile to the stable inorganic pool of P (Flow 32) . Part 
of the atmospheric deposition of P is stored in the inert pool (Flow 30), which will
balance the P losses by erosion. Consequently, the total pool of inorganic inert P 
in the soil does not change in time. Per time step it holds: 

RILSSP = INLAP · (1 - exp (- f1 · o t))

RILSP = INLAP · (1 - exp (- f2 · o t))

RISILP = INSTP · (1 - exp (- f3 · o t))

RDEPp = REROSP1NINP + RDEPISp 

[III.26] 

[III.27] 

[III.28] 

[III.29] 

where: 
RILSSP 

RILISP 

RISILP 
RDEPISp 
RDEPp 
REROS1NINP 
fi. f2, f3

0 t

rate of P transfer from soil inorganic labile P (INLAP) to sol­
ution (kg ha-1) 
rate of P transfer from INLAP to the soil inorganic stable P 
pool (INSTP) (kg ha-1) 
rate of transfer from INSTP to INLAP (kg ha-1) 
replenishment of INSTP by atmospheric deposition (kg ha-1) 
total atmospheric P deposition (kg ha-1) 
rate of erosion of the soil inorganic inert P pool (kg ha-1) 
relative rates of transfer for the respective transfers (RRILSS, 

RRILIS, RRISIL, respectively) (1/yr) 
time step (yr) 

For the time being, mineral weathering of K is modeled as a constant flux: 

Fwea = ARWEA/n

where: 
Fwea 
ARWEA 
n 

= weathering flux per time step 
= annual rate of weathering (kg/ha per yr) 
= number of time steps per year 

[III.30] 

If simulations are carried out over thousands of years, or in case simulations include 
the addition of artificial small reactive pools of nutrients, depletion or increase of 
the mineral phase may be important. Examples of artificial pools are fertilizer 
addition and the presence of ash after burning. The effect of depletion could be 
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accounted for by using a first order weathering model. Mineral weathering will 
increase too with decreasing pH. As pH is not simulated, such a dependency is not 
yet included. Changes in pH after fertilizer addition or burning may be appreciable. 
A general expression for the weathering flux (Fwea) is:

fwea = k · M/Mo · exp (apH) 

where: 
Mo 
M 
a and k 

= initial mineral mass (kg ha-1) 
= the actual mineral mass (kg ha-1) 
= constants 

[III.31] 

A square root increase of silicate weathering rates with increasing hydrogen con­
centration is commonly reported (Stumm et al., 1985). 

3.2.4 Cation exchange and adsorption 

In the present model only adsorption of potassium is considered. 
The exchange of potassium is described by linear adsorption (Fig. III.1: Flow 34): 

where: 
ADSK 
SSOLK 
� 

the adsorbed pool (kg/ha) 
the aqueous pool (kg/ha) 
distribution coefficient 

[III.32] 

The adsorption equation is substituted in the mass balance equation (Section 3.5). 
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3.3 Organic pools and fluxes 

3.3.1 Conversions and transfers 

Organic matter is subject to two types of conversion processes: dissimilation into 
C02, H2o and inorganic forms of P, N and K, and assimilation into microbial tissue. 
Conversion of organic P and N into inorganic forms is generally indicated as min­
eralization. Organic matter in the model is first subjected to conversion, whereafter 
the residues are transferred to a more stable organic pool. Eventually the organic 
residues will end up in the stable pool. The residence time of organic matter in all 
pools, except the stable organic pool, is one year. Conversion is brought about by 
the microbes, which utilize part of the converted elements for microbial growth. 
This process is also called immobilization. Depending on the quality of the organic 
substrate, conversion may lead to net immobilization of nutrients or net minera­
lization. 

The conversion and transfer ofleaf litter may require less than one year, e.g. in case 
of intensive biological activity or more than one year, e.g. under very acid or wet 
conditions (Staritsky, 1988). For wood litter much more time is required. At present, 
residence times are set at 1 and 15 yr, for leaf and wood litter, respectively. This 
implies for the model, that each year about 1/15 of the wood litter present is sub­
jected to conversion and transfer. Data were derived from Noij (1988) and Vooren 
(1985). For fine-root debris and coarse-root debris, the same procedure is followed, 
with the same residence times of 1 and 15 yr, respectively. 

After calculation of conversion and transfer fluxes for individual organic pools, 
fluxes are added to calculate the net element flux to solution and the net increase 
or decrease of the organic pools. The total dissimilation flux of carbon is not
calculated because C02 leaves the soil system and is irrelevant in the simulation of 
forest growth. 

The simulation of conversion of organic matter does not involve K. K is  present in 
the primary organic pools as ion K+. Most K will be released immediately after 
die-back of the vegetation compartment, the remainder is released fromthe primary 
organic pools (litter and root debris). Thus K transfer to the labile organic pool, 
which is the next stable pool in line, is negligible. 

3.3.2 Calculation of dissimilation and transfer constants

3.3.2.1 Main principles 

The calculation of the dissimilation constants is carried out only once. D issimilation 
of organic matter is described according to Janssen (1984, 1986): 
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Yt = Y 0 ·exp { 4.7 [(a + f · () t)-0
.6 - a-0.6]} 

where: 
Yo = the initial amount of organic matter (kg/ha) 
Yt = the remaining amount of organic matter (kg/ha) 
a t = time step (yr) 
a = initial age of organic matter (yr) 
ft = correction factor for temperature 

The value of ft can be found by: 

ft = 2ff-9)/9 

where: 
T = temperatur(0C) 

[III.33] 

[III.34] 

Equation III.34 (modified from Janssen, 1986) predicts that the rate of dissimilation 
doubles for every 90C increase of temperature. The age (a) is a measure of the 
stability of the organic pool. The increase in age of organic pools with time is equal 
to the product of ft and the residence time of organic matter in the pool. For lowland 
tropical regions a value of 4 is taken for f1• A value of 1 for ft refers to organic 
matter dissimilation in temperate regions where the average annual temperature 
is 90C. Equation III.34 predicts that decay in tropical regions where the average 
annual temperature amounts to 27°C, is.four times faster than in temperate regions, 
as found by Jenkinson and Anayaba (1977). The residence time of organic matter 
in the labile and moderately labile pool is one year. Assuming an age of  2.18 years 
for the leaf litter pool (Janssen, 1984; Noij, 1988) , the values of a for the labile and 
moderately labile pool would be 6.18 years and 10.18 years, respectively. However, 
the value of a for the organic s table pool is not 14.18 years, as the stable pool is an 
accumulation of organic matter of various ages. The a-parameter for the stable pool 
is generally calibr�ted by assuming that presently observed pools of stable organic 
matter are in steady state with present inputs or organic matter. 

The procedure for transfer of organic matter is (see Fig. III.1): 
the leaf litter pool and fine root debris are transferred to the organic labile 
pool (Flow 12 and 17); 
a part of the wood litter and coarse root debris is transferred to the organic 
labile pool (Flow 13 and 15), the other part to the moderately labile pool (Flow 
14 and 16); 
the residue of labile organic matter after one year is transferred to the organic 
moderately labile pool (Flow 18); 
the residue of moderately labile organic matter after one year is transferred 
to the organic stable pool (Flow 19). 
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3.3.2.2 Main pools and sub-pools 

When using smaller time steps than a year, each organic pool (with exception of 
the stable pool) has to be further divided into a number of sub-pools equal to the 
number of time steps. The size of the first, least stable, sub-pool of the primary 
organic pools (Section 2.2) is the input from the vegetation die-back during one 
time step. The residue after dissimilation is transferred to the next sub-pool, etc. 
The residue of the last, most stable, sub-pool is transferred to the first sub-pool of 
the next in-line stable organic main pool. 

Each sub-pool has its own "age" (aD. At the beginning of the time step, the first 
sub-pool has the same age as the last sub-pool of the preceding pool at the end of 
the preceding time step (it is in fact the same material) ; this age is a. At the end of 
the time step the age of each sub-pool has increased by f/n years. 
In formula: 

ai ,b = a + (i - 1) · ftfn 

ai e = a + i · ft/n 
' 

where: 
ai,b = age of sub-pool i at the beginning of the time step 
ai,e = age of sub-pool i at the end of the time step 
a = age of the first sub-pool at the beginning of the time step (yr) 
ft = correction factor for temperature, see Equation III.34 
n = the number of time steps per year 

[III.35] 

[III.36] 

The masses of the sub-pools are calculated by Equation III.33, with the following 
values for the various parameters: 
Yt = Yi > the mass of sub-pool i at the end of the time step (kg/ha) 
Yo = mass of the first sub-pool at the beginning of the time step (kg/ha) 
a = age of the first sub-pool at the beginning of the time step (yr) 
o t = (i-1)/n (yr) 

The mass of the total pool is equal to the sum of the masses of the sub-pools. At 
the beginning of the time s tep, the mass of the first sub-pool is Y 0 and that of the
last sub-pool is Y (n -1)· At the end of the time step the masses are Y1 and Y m
respectively. The mass of the total pool decreases from Ytot,b to Ytot ,e during the 
time step, where: 

n 

Y tot.b = L YI 
i •I 

[III.37] 
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n •I 
Y tot,e = L Yii=2 

[III.38] 

The rate of dissimilation of sub-pool i equals to the mass difference of the sub-pool 
between the beginning and the end of a time step: 

J dis = Yi - Yi + 1 (kg per time step) [III.39]

The rate of transfer is equal to the mass of the sub-pool at the end of the time step: 

J tra = Yi + 1 (kg per time step) [III.40] 

3.3.2.3 Dissimilation and transfer constants of main pools 

Application of the procedure outlined above requires much calcula,tion time. 
Therefore it was decided to apply the division into sub-pools to the leaf litter pool 
only, because the relative conversion rates of its sub-pools differ strongly. For the 
other main pools, conversions are described as first order reactions for the total 
pool. The sub-pool division is then used only to derive the first order rate constants. 
The first-order expression for dissimilation is: 

dY/dt = - Cctis -Y 

where Cctis = first order rate constant for dissimilation

Integration yields: 

Yto t,e = Yto t,b exp (-Cdis t) 

So: 

J dis = Y to t,b - Y to t,e = Y to t,b (1-exp (-Cdis t)) 

[III.41] 

[III.42] 

[III.43] 

[III.44] 

Equation III.37 and III.38 give Y to t,b and Y to t,e from which, Cctis for the overall
first-order dissimilation reaction can be calculated. 

Transfer to a next main pool during one time step was calculated above as the mass 
of the last sub-pool at the end of a time-step (Eq. III.40). This transfer flux plus the
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dissimilation flux from the main pool (Eq. III.44) are used to derive a constant for 
the sum of the dissimilation and transfer fluxes (J da t) , which can be described similar
to Eq. III.44: 

J da t = Y tot,b (1 - exp (- Cda tt)) [III.45] 

The transfer flux to the next main pool is then equal to: 

[III.46] 

The initial ages of wood and coarse root debris that are transferred from the forest 
floor wood (FFW) pool and the coarse root debris (CRD) pool, respectively, is 8
years. The ages of the pools to which FFW and CRD are transferred are 6.18 
(ORLA) and 10.18 (ORML) years, respectively (see Section 3.3.2.1). To overcome 
this age difference between transferred material and ORLA and ORML pools, a 
partitioning key, L, was introduced. This key brings about that the sum of dissi­
milation during one year of fraction L transferred to the ORLA-pool and of fraction 
(1-L) transferred to the ORML-pool equals the dissimilation during one year of 
eight-years old organic material (EYM). 

J dis ,ORIA + (1-L) J dis ,ORM L = J dis ,EYM [III.47] 

J dis ,ORIA• J dis ,ORM L and J dis ,EYM can be calculated with Equation III.33 with t is
1 yr and ages of 6.18, 10.18 and 8 yr, respectively. 

3.3.2.4 Dissimilation constant and age of the organic stable pool 

For the calculation of the dissimilation constant of the organic stable pool a different 
procedure is used. The input in the stable pool per time step is the residue of the 
last sub-pool of the moderately labile pool: J1ra ,OM RL (EquationIII.46). As there is
no transfer form the ORST pool, the following equation must hold in a steady state 
situation: 

J 1ra,OM RL = ORST · (1 - exp (- Cdis.oRSr/n))

where: 
ORST 
Cdis •ORSf 
n 

= organic stable pool (kg/ha) 
= dissimilation constant of ORST (1/yr) 
= number of time steps 

[III.48] 

The C content of ORST is found as the total C content in the soil minus the C 
contents in the previously calculated pools. (If such calculations are not possible, it 
can be that assumed the C contents of the labile, moderately labile and stable pool 
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are present in the proportion of 2:3:95) . The unknown Cctis,ORSf in Equation III.48
can then be solved. At the end of the time step the size of the organic stable pool 
(ORSTc) is: 

ORSTe = ORSTb ·exp ( - Cctis,ORsr/ n) 

The age of the organic stable pool (a) is found from: 

ORSTe = ORSTb · exp (4.7 ((a + f/n)0.6 - a0.6)))

where a is the only unknown parameter. 

3.3.3 Mineralization of N and P 

[III.49] 

[III.50] 

The mineralization of N and P is calculated as the difference between conversion 
and assimilation of organic N and P .  For that purpose the dissimilation-assimilation 
ratio (DA) during conversion must be known and the C-N and C-P ratios of the 
microbes involved (CNm, CP m)· In the model these values are set at 2, 8.5 and 100 
for DA, CNm and CP m• respectively (Noij, 1988). Such values refer to fungi grazing 
on organic matter with rather high C-N and C-P ratios like those present in tropical 
forests. The conversion of organic N and P follows from the conversion of carbon. 
The principles of the calculation are as follows. 
The flux of converted carbon per time step (Jconvd is:

lconv,C = J dis,c· + 1ass ,C 

where J dis ,C follows from Equation III.39 or Equation III.44, and

1ass,C = J dis ,c/ DA 

The flux of converted organic N and P per time step is:

lconv,N = lconv,c/ CNs 

lconv P = lconv c/ CP s ' ' 

[III.51] 

[III.52] 

[III.53] 

[III.54] 

where CN5 and CP5 are the C-N and C-P ratios of the substrate that is converted. 
The assimilation of N and P is calculated by: 

[III.55] 

lass ,P = lass,c/ CP m [Ill.56] 
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The mineralization fluxes of N and P then are; 

J min,N = J conv,N - J ass ,N> and [IIl.57] 

Jmin,P = Jconv,P -JassP [III.58]

The values of J min,N and J min,P can be positive (net mineralization) or negative (net
immobilization). The mineralization fluxes are indicated in Fig. III.1 by Flows 20-26. 

At the end of each time step, the fluxes of dissimilated C, and mineralized N and 
P are subtracted from the quantities of these elements present at the beginning of 
each time step (C0, N0, P0) .  This implies that the C-N and C-P ratios of the substrate 
change into: 

CNs = ( Co -J dis d/(No - JminN), and [III.59] 

CPs = ( Co - J disc)/(Po - JminP) [III.60] 

The new values of CNs and CPs are used for the calculations in the following time 
step. The new ratios are lower than the original ones. In the course of the min­
eralization process the ratios further decrease, gradually approaching the C-N and 
C-P ratios of the microbes. 

The total mineralization flux per year may depend on the time step. The smaller 
the time step, the more frequently the C-N and C-P ratios are adjusted ( = lowered) 
and the higher the mineralization flux is. For time steps smaller than 0.005 yr, there
is no further increase in mineralization flux. This time step is much smaller than 
that for the calculation of the other processes in the model, and its use would severely 
increase calculating time. Fortunately, there is a simple linear relation between the 
actualJmin,N and the initial C-N, and between Jmin,P and the initial C-P ratio (Janssen
and Noij, 1992; Noij, 1988). 

Jm in,X = (q/CR - r) ·Co [III.61] 

where: 
x 
Jmin 
CR 
Co 
q and r 

= N or P
the actual mineralization flux during a time period 
the C-N or C-P ratio at the beginning of the time step 
the carbon content of the pool at the beginning of the time step 
regression coefficients 
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The values of q and r depend on the type of organic substrate, characterized by its 
"age" and on the length of the time step for which Equation III.61 is used. 

In the unit DECCON of the model, q and r are determined for each organic pool, 
and for the desired time step of the model. For that purpose in DECCON two 
different CRs are used and a time step of 1/216. The resulting values of JminX are
substituted in Equation III.61 to solve q and r. 

33.4 Release of K from organic pools

For potassium a different procedure is followed. In contrast to P and N, K is not 
structurally bound to C, but instead mainly present in the cell solution. Consequently, 
a large fraction (FFFLL,set at 0.5) of K will be released immediately after leaf litter 
fall (or fine root sloughing) and another fraction upon breakdown of the cell walls, 
proportionally to the C-dissimilation flux: 

lrel ,k = J dis,c/PORPc · PORPk [III.62] 

where: 

lrel,K 
J dis ,C 
PORPc 
PORPK 

= K-release flux from primary organic pools (kg ha-1) per time step 
= dissimilation flux of C (kg ha-1) per time step 
= amount of C in primary organic pool (kg/ha) 
= amount of K in primary organic pool (kg/ha) 

Potassium remaining in the last sub-pool, before transfer to the organic labile and 
moderately labile pool, is instantaneously released to solution at the end of the time 
step (Fig. III.1: Flow 11). The other K flows are not explicitly shown in Fig. III.1, 
to avoid too a complicated diagram. 

3.4 Nutrient uptake and growth 

3.4.1 General description and flow scheme

It should be emphasized that DYNAMITE does not explicitly simulate dry-matter 
production. Dry-matter production is related to uptake of N, P or K. It is assumed 
that in tropical regions solar radiation is not limiting forest growth. 
The sequence of calculations during simulation of uptake and growth is (see also 
Fig. III.1) is not the same as the sequence of discussion in Sections 3.4.2 to 3.4.5. 
The calculations sub 2 to 5 are necessary because nutrient contents and concen­
trations and other vegetation characteristics have changed as a result of the fluxes 
in the preceding time step. The calculations sub 6 to 9 refer to the fluxes in the 
actual time step. 
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The sequence of calculations is: 
1) in the first time step the element contents and concentrations for the various

vegetation components and the total vegetation are initialized ( cf. Section 4.2);
2) in the following time steps, the calculations start with the adjustment of sub­

stance contents and concentrations for total fine roots, coarse roots, wood and
leaf (Section 3.4.5). The wood pool is further sub-divided into branches and
stems. After adjustment, element concentrations are calculated for newly
formed stems, branches, fine roots and coarse roots (Section 3.4.3);

3) calculation of the new leaf area index (Section 3.4.3.2);
4) calculation of the leaf and wood fall rate (Section 3.4.4);
5) calculation of fine root sloughing and transition of fine roots to coarse roots

and calculation of coarse-root growth (Section 3.4.3.4);
6) calculation of the nutrient availability in solution. Determination of limiting

nutrient and calculation of nutrient uptake per element. Reduction of nutrient
uptake during soil moisture deficit (Section 3.4.2);

7) calculation of nutrient distribution between, and growth of, fine roots and leaves
and calculation of Soil Fertility Index (SFI) (Section 3.4.3.2);

8) calculation of nutrients available for wood and calculation of wood growth
(Section 3.4.3.3) ;

9) remaining nutrients, if any, are returned to soil solution. Calculation of net
nutrient uptake by the vegetation, and recalculation of growth if necessary
(Sections 3.4.3.3 and 3.4.4).

3.4.2 Soil nutrient availability and nutrient uptake 

The maximum availability of nutrients from the soil solution is estimated from: 

UPmax,i = SSOLi,b + 2: ini - NANi [III.63] 

where: 
UPmax ,i 
SSOLi,b 

maximum uptake of nutrient i (kg/ha) 
amount of nutrient i in soil solution at the beginning of the time step 
(Section 3.5) (kg/ha) 
sum of inputs of nutrient i from mineralization, weathering and 
atmospheric deposition during the time step 
estimate of the amount of nutrient i in soil solution which is not 
available to plants during the time step (kg/ha). 

NANi contains two terms. The first term is an estimate of the amount of nutrient
i in soil solution which is not available due to leaching from the soil compartment. 
It is supposed that in case of drainage, only a fraction (1-f1) ofSSOLi b will be taken' 
up by the vegetation during the time step, the other part (f1) is supposed to leach 
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during the time step. The second term is an estimate of nutrient i in soil solution 
which is not available, because its concentrations is below the minimum concen­
tration for root uptake. 

NAN · = f1 · J /e · D · SSOL· b + 10 e ·D·C . .1 out 1, mm,1

where: 

[III.64] 

Cmin ,i minimum concentration of nutrient i in soil solution required for root 
uptake (kg/m3) 
leaching fraction 

When there is a soil moisture deficit, nutrient uptake will be reduced according to 
the procedure used for reducing root water uptake (Equation III.15): 

u Pact ,i = UP max ,i . ( e - e wp) I ( e ru - e wp) [III.65] 

eru = e,. f ru 

where: 
UPact,i 
UPmax,i 
e ru 

e r 
fru 

[III.66] 

actual uptake of nutrient i (kg/ha) 
uptake of nutrient i based on nutrient availability 
water content below which reduction in nutrient uptake starts 

water content below which reduction in water uptake occurs 
constant, presently set to 1 

As explained in Part II, Section 4, only the most limiting nutrient is taken up as 
calculated with UP act ,i · The uptake of the other nutrients depend on their ratio to 
the most limiting nutrient. 
The ratios N/P, P /K and K/N for uptake are calculated from the corresponding 
ratios in the soil solution, according to empirical power relationships (derived in 
Part II, Section 4). 

log (RA TX, Y up) = a + b • log (RA TX, Y ss) [III.67] 

where: 
RATX,Yup 
RATX,Yss 

a,b 

=ratio of nutrient x to nutrient y in plant uptake flux
=ratio of available amount of nutrient X to that of nutrient Y in soil 

solution during the time step; available amount as caculated with 
UPmax ,i 

= intercept and slope 
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Furthermore, uptake ratios should satisfy: 

RA TX,Y up,rnin < RA T X,Yup < RA T X,Yup ,max [III.68] 

RA TX, Y up ,rnin and RA TX, Y up ,max refer to the minimum and maximum values the
ratio can have. The concepts are described in Part II, Section 4. Next the ratios 
RATX,Yup/RATX,Yss are calculated for all possible combinations of XY. The
nutrient X giving the highest value of that ratio is the most limiting nutrient. The 
uptake for the other nutrients follows from: 

UP act.Y =UP act.X1 •RA TY, X 1 

with X1 = limiting nutrient for total uptake. 

3.4.3 Nutrient distribution in and growth of the vegetation 

3.4.3.1 General principles 

The growth of a plant component is calculated by: 

[III.69] 

GROWTH = NUTRIENT UPTAKE/NUTRIENT CONCENTRATION 

This means that for calculation of growth the uptake and concentration of nutrients 
in the newly grown part of a plant component must be known. 

The total uptake of nutrients is calculated in Section 3.4.2. Initially, the nutrients 
that are taken up are distributed between fine roots and leaves (Fig. III.1: Flow 1, 
2 and 3). The distribution is a function of the nutrient concentrations in fine roots 
and the maximum and minimum concentrations in leaves. The remainder of the 
nutrients, if any, are sent to wood. The concentration of nutrients in newly grown 
roots and wood are functions of the nutrient concentration in leaves at the beginning 
of the time step. 

The actual growth of a plant component is determined by the limiting nutrient. The 
required uptake of the other nutrients then follows from: 

UPTAKE = GROWTH· CONCENTRATION 

3.4.3.2 Fine roots and leaves 

The total uptake of nutrient i (UP ac t,i) is distributed between the newly formed fine
roots and the newly formed leaves: 
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UP ac t,i = GROWFR · FRN Ci + GROWL· LNq 

where: 
dry matter in newly formed fine roots (kg/ha) 
dry matter in newly formed leaves (kg/ha) 

[III.70] 

GROWFR 
GROWL 
FRNq concentration of nutrient i in the newly formed fine roots (kg/kg) 

concentration of nutrient i in newly formed leaves (kg/kg) 

The concentration of nutrient i in the newly formed fine roots is calculated as a 
function of the concentration in leaves at the beginning of the time step (LEAF Ci b) · ' 

[III.71] 

The values of ai and bi follow from empirical relationships (Part II, Section 5). 

Next, it is determined which nutrient would be limiting for fine root growth, if the 
whole quantity of nutrients taken up would be allocated to fine roots. The limiting 
nutrient (il) is the one for which the ratio UP ac t,i/FRNCj is the lowest. It is not
necessary the same nutrient that was limiting for the total uptake. It is assumed that 
the concentration of this nutrient in the newly formed leaves will have the minimum 
value (Part II, Table 8), indicated by LEAFCDil . (D stands for dilution). Substituting
this value in Equation III.70 and reorganizing gives the following relationship 
between GROWFR and GROWL: 

GROWFR = UP ac t,i1/FRNCi1 - GROWL· LEAFCDi i/FRNCi1 [III.72] 

GROWFR = A - B · GROWL [III.73] 

Substitution of Equation III.73 in Equation III.70 yields: 

UPTac t,i = (A - B ·GROWL) · FRNCi - GROWL· LNCi [III.74] 

For each of the non-limiting nutrients, a range of possible leaf growth can be 
calculated. These ranges are between GROWLAi and GROWLDi . 

GROWLAi = (UPac t,i - A - FRN Ci)/(LEAFCAi - B · FRNCi) 
GROWLDi = (UP ac t,i - A ·  FRNCi)/LEAFCDi - B · FRNCj) 

where: 

[III.75] 

[III.76] 

LEAFCAi = maximum (A stands for accumulation) concentration of nutrient i 
in leaves 
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LEAFCDi = minimum (D stands for dilution) concentration of nutrient i in leaves 

Usually the ranges found for the various nutrients, have a common overlap between 
GRLOWLAmax and GRLOWLDmin• where: 

GROWLAmax = the maximum GROWLAi 
GROWLDmin = the minimum GROWLDi 

The actual leaf growth (GROWL) is set equal to the mid point of the common 
overlap: 

GROWL = 0.5 (GROWLDmin + GROWLAmax) [III.77] 

If there is no overlap, in other words if GROWLDmin < GROWLAmax• the actual
leaf growth is: 

GROWL = GROWLDmin [III.78] 

GROWL should be lower than the maximum leaf growth (GROWLmax) as 
determined by the transpiration (Tact; Section 3.1.7) and transpiration ratio (TRR): 

GROWLmax = TactfTRR [III.79]

where: 
TRR = the minimum amount of water required per kg of leaf dry-matter 

production (kg/kg). 

The ratio GROWL/GROWLmax is called Soil Fertility Index (SFI). The value of 
SFI is between 0 and 1. If GROWL is more than GROWLmax• water availability 
limits growth stronger than nutrient availability. 

The new growth of fine roots is found by substitution of GROWL, calculated with 
Equation III.77, III.78 or III.79, in Equation III.69. Subsequently, the uptake of 
nutrients in fine roots (UPFRi) is calculated by 

UPFRi = GROWFR · FRNCj 

and the uptake of nutrients (UPLi) in leaves by 

UPLi = UP act,i - UPFRi

[III.80] 

[III.81] 

Nutrients can be stored in the leaf component up to a maximum concentration: 
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UPLAi 
UPLact,i

where: 

= GROWL/LEAFCAi 
= MINIMUM (UPLi, UPLAi) 

[ II I .82]  
[ I I I . 8 3 ]  

UPLAi 
UPLact,i 

= uptake of i at maximum concentration of i i n  leaves 
= actual uptake of i in leaf 

LEAFCAi 
MINIMUM (X, Y) 

= maximum leaf element concentration of nutrient i 
= function selecting smallest value of X and Y 

If UPLi > UPLact,h the difference (UPLi-UPLact,i) is sent to the wood (Fig. IIIl:
Flow 5). It is considered as the direct uptake of nutrient i by wood (Section 3.4.3.3).
Besides, there is element translocation from leaf to wood prior to litter fall. Its rate 
(RLWREi; Fig. III.1: Flow 6) is a fraction (FLRDUi) of the total amount of i 
(LEAFi) in leaf subject to fall. 

RLWREi = LEAFi · FLFA 
·
FLRDUi [ I I I . 84]  

where: 
FLFA = fraction of leaf mass which will fall (See Section 3.4.4)
FLRDUi = reduction fraction of i in leaves before leaf fall. 

The values of FLRDUi for K and dry matter are fixed, those for N and P are a 
function of (i) the regular leaf element concentration (LEAFCj), (ii) the lowest
possible leaf element concentration just before fall (LEAFLCj): 

Reduction fractions for individual elements are different. They are calculated by: 

FLRDUi = MINIMUM( Yi. Y2) [ I I I .SS]  

where: 
Y 1 = (LEAFCi - LEAFLCi)/LEAFCj) [ I I I . 86]  

Y 2 = c + d · LEAFCj [ I I I .87]  

where c and d are fixed coefficients. For explanation and values of coefficients, see 
Part II, Section 6. 

For dry matter RLWREi is not calculated. The calculation of FLRDUnM is needed 
for the assessment of the amount of dry matter in falling leaves. 

Transition of fine roots to coarse roots is discussed in Section 3.4.3.4. 
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3.4.3.3 Wood 

The remaining nutrients after uptake and growth of the fine roots and leaves are 
available for the wood (UPWi; Fig. III.1: Flow 5): 

UPWi = UP act,i - UPFRi - UPLact,i [III.88] 

This amount of nutrients is supplemented with nutrients from redistribution in the 
leaf compartments before leaflitter fall (RLWREi> Equation III.84) . The total rate 
of nutrients entering wood (RENWi) then becomes: 

[III.89] 

Similar to calculations for the other vegetation components, wood growth is 
calculated as: 

GROWW = MINIMUM (RENWi/WOODNCi) [III.90]

where: 
= minimum value of Xi for i = N, P or K MINIMUM (Xi) 

WOODNCj = concentration (mass fraction) of nutrient i in newly formed 
wood 

The remaining nutrients (SUPWi), if any, are returned to solution. 

SUPWi = RENWi - (GROWW · WOODNCj) [III.91] 

When calculating the nutrient concentration in newly formed wood, distinction is 
made between branch wood and stem wood. Nutrient concentration in stem wood 
and branch wood are both linearly depending on the leaf element concentrations. 

BRNq 
STEMNCi 

where: 
BRNq 
STEMNCj 
BRANCAi 

STEMCAi 

= a + b LEAFCi>b 
= c + d LEAFCi,b

...:5 BRANCAi
,..:5 STEMCAi

[III.92] 

[III.93]
. 

= maximum concentrations of nutrient i in branches (Part II, Section 
5). 

= maximum concentration of nutrient i in stems 
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A fixed fraction of wood growth is allocated to branches (FERA) and stem 
(1-FBRA). The average concentration of nutrient i in the wood compartment is 
thus calculated as: 

WOODCi = FERA · BRANCj + (1 - FERA) · STEMCi [ I I I .94]  

3.4.3.4 Coarse roots 

Turnover of fine roots (RFRTR), in kg/ha per time step comprises two flows: 
transition of fine roots to coarse roots (RFRCR); Fig. III.1: Flow 4), and 
sloughing of fine roots to fine root debris (RFRSL; Fig. III.1: flow 10). 

Total turnover is described by: 

RFRTR = FROOTnM · (1 - exp (RRFRTR · o t) [ I I I .95 ] 

where: 
FROOTnM = dry mass of fine roots (at the beginning of the time step) (kg/ha) 
RRFRTR = relative rate of fine-root turnover (1/yr) 

The rate of transition from fine to coarse roots (RFRCR, in kg/ha per time step) 
is equal to: 

RFRCR = FFRCRT · RFRTR [ I I I .96]  

where: 
FFRCRT = fraction of rate of fine-root turnover that is translocatcd to coarse 

roots 

In Part II, Section 2.4, it is explained that FFRCRT is calculated by: 

FFRCRT = (1 - exp (- RRCRTR))/(1 - exp (-RRFRTR)) 

· qr · SFI · MIN(CRNCi/FRNCj) [ I I I . 97 ]  

where: 
RRCRTR 

SFI 
CRNCi 

SFI 

relative rate of coarse-root turnover (1/yr), which is related to 
the relative rate of woodfall, RRWFA via Eq. III.114 
ratio of CROOTnM/FROOTnM to SFI (see Part II, Section 
2.4) 
Soil Fertility Index, calculated in Section 3.4.3.2 

= concentration of nutrient i in newly grown coarse roots (kg/kg) 

= GROWL/GROWLmax [ I I I . 9 8 ]  
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CRNCi and FRNCi are calculated by Equations III.96 and III.67, respectively. 
The transfer fluxes for individual elements (RFRCRi) are obtained by multiplying 
RFRCR by the respective element concentrations (FROOTCi) · 

RFRCRi = RFRCR · FROOTCi [III.99] 

where: 
FROOTCi = the concentration of element i in total fine roots. 

The nutrient concentration in the newly formed coarse roots (CRNCD is calculated 
as the average of the nutrient concentrations in newly formed stems and newly 
formed fine roots: 

CRNCi = 0.5 (STEMNCi + FRNCi) [III.100] 

The growth of the coarse roots is calculated in the same way as shown for wood. 

GROWCR = MINIMUM [(RFRCRi)/CRNCiJ [III.101] 

where i stands for N, P or K. 

Remaining nutrients (SUPCRi), if any, are returned to solution: 

SUPCRi = RFRCRi - GROWCR/CRNCj [III.102] 

3.4.4 Leaf and wood fall, fine-root sloughing and coarse-root turnover

Litter fall and root turnover are calculated as fractions of the dry matter present in 
the relevant vegetation parts at the beginning of the time step. 

The leaf fall rate (RLFA) is: 

RLFA = FLFA · LEAF [III.103] 

FLFA = 1 - exp (-RRLFA · o t) [III. I 04]

where: 
FLFA fraction of leaves which will fall per time step; FLF A is smaller 

than or equal to 1 
RRLFA relative rate of leaf fall (1/yr) 
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The relative rate of leaf. fall is calculated as a function of the concentration of 
nutrients, but this function might require correction for light stress (fLAI) or 
moisture stress (fMs) (Part II, Section 7.3). The relative rate of leaf fall, as deter­
mined by nutrient i only, is calculated as follows. 

[ I I I . 1 05 ]  

where: 
RRLFi relative rate of leaf fall, as determined by nutrient i (1/yr); its value 

should lie between 0.8 and 2.0 
regression constants 
constants, values of LEAFCi (kg/kg) 

The multiplication factor for light stress (caused by a high LAI) is calculated as 
follows. 

[ I I I . 1 06 ]  

where: 
constant, presently set at 3 
critical LAI; for tropical forests its value is assumed to be  4 

The multiplication factor for moisture stress (fMs) is calculated as follows: 

where: 
qm 
Tpot' Tact 

constant, presently set at 3 
potential and actual transpiration 

The values of fLAI and of fMs should lie between 0 and 3. 

[ I I I .  I 07 ]  

Finally, the relative rate o f  leaf fall (RRLFA) i s  calculated as the product o f  the 
lowest value of RRLFi (for i = N, P or K), and the highest value of fLAI and fMs,
provided their values are more than 1. 

RRLFA = MINIMUM (RRLFi) · MAXIMUM (1, fLAI> fMs) [ I I I . 1 08 ]  

To calculate the rate of transfer of nutrients by leaf fall, the nutrients that are 
redistributed have to be substracted from the product of leaf fall and leaf nutrient 
concentration: 

RLFAi = LEAFi · RLFAR - RLWREi [ I I I . 1 09 ]  

154 



where: 
total �mount of nutrient i in leaves (kg/ha) LEAFi 

RLWREi rate of nutrient redistribution (kg/ha), as calculated in Equation 
III.80. 

For RLFAoM (rate of transfer of dry matter by leaf fall) it holds: 

RLFAoM = (1 - FLRDUoM . LEAFoM . RLFAR [III.110) 

where: 
FLRDUoM = reduction fraction for DM in leaves before leaf fall. 

The relative rate of wood fall (RRWFA, 1/yr) is a discontinuous function of the 
wood mass. The value of the function is determined by linear interpolation in a 
function AFGEN (WOODoM, RRWFA), modified after Noij (1988). The rate of 
wood fall during a time step is calculated as follows. 

RWFA = FWFA · WOODoM 

where: 
RWFA 
FWFA 
WOODoM 

FWFA 
RRWFA 

= rate of wood fall (kg/ha per time step) 
= fraction of wood fall per time step 
= wood dry matter (kg/ha) 

= 1 - exp (RRWFA · t) 
= AFGEN (WOODoM, RRWFA) 

[III. I l l ] 

[III.112) 

[III.113] 

The rate of nutrients transferred by wood fall (RFW Ai) (Fig. III.1: Flow 8) is: 

RFWAi = RFWA ·WOODi [III.114) 

where WOODi = total amount of nutrient i in wood (kg/ha) 

The rate of fine root sloughing (RFRSL) is (Part II, Section 2): 

RFRSL = (1-FFRCRT) · RFRTR [III.115) 

RFRTR and FFRCRT are calculated by the Equations III.95 and III.97, respect­
ively. 

The rate of nutrient i transferred by fine-root sloughing to fine-root debris (RFRSLi) 
(Fig. III.1: Flow 10) is: 
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RFRSLi = RFRSL · FROOTi [ I I I . 1 1 6 ] 

where FROOTi = total amount of nutrient i in fine roots (kg/ha) 

The rate of coarse-root turnover (RCRTR) is a fixed fraction (FCRTR) 
of the coarse-root mass: 

RCRTR = FCRTR · CROOTnM 

where: 
CROOTnM = dry mass of coarse roots (kg/ha)

FCRTR = fcRTR · WFA 

where: 
fcRTR = constant, presently set at 2 

[ II I . 1 1 7 ]  

[ II I . 1 1 8 ]  

The rate o f  nutrient i transferred by coarse-root turnover to coarse-root debris, 
RCRTRi (Fig. III.1: Flow 9), is: 

RCRTRi = RCRTR · CROOTi 

where CROOTi = total amount of nutrient i in coarse roots. 

3.4.5 Net growth and adjustment of vegetation components 

[ I I I . 1 1 9 ]

The net increase of nutrient contents for the various vegetation components is: 

NGROWCRi = GROWCRi - RCRTRi 

NGROWLi = GROWLi - RLFAi - RLWREi 

NGROWWi = GROWWi - RWFAi 

where: 
prefix N = net 

= N, P , K, or DM 

[ I II . 1 20 ]  

[ II I . 1 2 1 ] 

[ II I . 1 22]  

[ I I I . 1 23 ]  

For the increase in leaf dry matter the calculation is a little different than in Equation
III.122, namely

NGROWLnM = GROWLoM - LEAFoM . RLFAR 
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This implies that total D M, originally present in the leaves that will fall, is subtracted 
from the gross increase in leaf DM. 

Next the final amounts of nutrients and DM in the various vegetation components 
are calculated, i.e. the amounts present at the beginning of the following time step, 
e.g. 

FROOTi = FROOTi + NGROWFRi [ II I . 1 25 ]  

The nutrient concentrations are found by e.g.: 

LEAFq = LFAFi / LEAFoM [ I I I . 1 26 ]  

This LEAFCi i s  the concentration at the beginning of the next time step (LEAFCi,b) ,  
to which are related the nutrient concentrations in fine roots, branches and stems 
that will be formed during the next time step (Eq. III.71, III.92 and III.93) 

Further the new leaf area index is calculated according to: 

LAI = SLA · LEAFoM/10000 [ I I I . 1 27 ]  

SLA i s  found as the average value of SLA calculated as a function o f  leaf N, and 
SLA calculated as a function of leaf P: 

SLA = 0.5 · (q + r · LEAFCN) + s + t · LEAFCp) 

with 
= specific leaf area (m2 kg-1)
= leaf dry matter (kg ha-1) 
= N concentration in leaf (g/g) 
= P concentration in leaf (g/g) 

[ I I I  . 1 28 ]  

SLA 
LEAFoM 
LEAFCN 
LEAFCp 
q, r, s, t = constants, presently set at 1.99, 405, 2.51 and 6804, respectively

3.5 Chemical balance and adjustment of pools 

For the calculation of the total amount of nutrient i is the soil solution and in the 
adsorbed pool at the end of the time step, which comes down to the adjustment of 
these pools at the beginning of the next time step, the following formulation for the 
chemical balance is used: 

SSOLi,e + ADSi ,e = SSOLi,b + ADSi,b + L: in ,i - UPact,i - Fout,i [ II I . 1 29 ]  
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with: 
SSOLi,b 
SSOLi,e 
A DSi,b 
A DSi,e 
2: ini 
UPact,i 
Fout,i 

amount of nutrient i in soil solution at the beginning of the time step 
amount of nutrient i in soil solution at the end of the time step 
amount of adsorbed nutrient i at the beginning of the time step 
amount of adsorbed nutrient i at the end of the time step 
sum of net inputs into soil solution of nutrient i during the time step 
total actual uptake of nutrient i during the time step 
leaching of nutrient i with the outgoing waterflux during the time step 

The individual terms are calculated as follows. 

A DSi = Kd · SSOLi [III.130] 

where: 
� linear distribution coefficient for element contents in the adsorbed and 

aqueous phase (Section 3.2.4) 

I:ini consists of the following fluxes. 

F ctep,i 
Fwea,i 
Fmin,i 
Fin,i 

= F d e p , i  + F wea. i + F m i n . i  + F I n . I

atmospheric deposition of nutrient i 
mineral weathering of nutrient i 
mineralization of nutrient i from all organic matter pools 
input of nutrient i from overlying soil layer 

[III.131] 

Fout is calculated with the average element concentration and water content at the 
beginning and the end of the time step. 

Fout = lout · SSOLi,b + SSOLi ,e/ D · (8 b + 8 e) [III.132] 

This gives the following explicit expression for SSOLi e: , 

SSOLi,e = SSOLi,b · (� + 1 - a) + 2: ini -U Pact,i/� + a + 1 [III.133] 

where: 
a = Jout/ D  · ( e b + 8 e) [III.134] 

The other pools are adjusted in a similar way, but the formulation is simpler because 
no water flux is involved: 
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POOLk,i = POOLk,i + L: ink,i - L: outk,i [ I I I . 1 35 ]  

where: 
POOLk,i 
L: ink,i
L: outk,i

= amount of substance i in pool k (kg/ha) 
= sum of inputs of nutrient i into pool k during time step (kg/ha) 
= sum of outputs of nutrient i from pool k during time step (kg/ha) 
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4 MODEL INPUT 

4.1 Introduction 

A general description of required input data for the DYNAMITE simulation model 
is given in Section 3.3, Part I. Table III.2 shows the required hydrologic input data 
and Table III.3 the chemical and biological input parameters. The values of the data 
apply to a tropical forest in the Tai region, Cote d'Ivoire, unless stated otherwise. 

With respect to the required input data, three parameter types have been distin­
guished: 

initial values for state variables; divided into state variables for the soil com­
ponents and state variables for the vegetation components; 
intrinsic system variables, extracted from the intrinsic relations described in 
Part II; subdivided following the sequence of the discussion in Section 3 ;  
boundary fluxes or boundary flux regulating variables (e.g. deposition fluxes 
and relative erosion rate). 

4.2 Input file for the moisture cycling sub-model 

See Table III.2 

Average monthly rainfall (AMR) and pan evaporation (AMEpan) data for the 
Tai area were taken form Collinet et al., 1984. Days with rain within a month 
(DAYSWR) are estimated values. 

All nutrient related processes take place in the first soil layer. Its thickness is 
set at 200 mm. Water uptake can also occur form the second soil layer. At 
present we suppose that 40% of the potential water uptake can take place from 
the second soil layer (WUF in Eq. III.13). The litter layer is not considered in 
the water balance calculations. 

The volume fractions of moisture ( 8) and gas are all estimated values. The symbols
refer to the moisture fraction at the beginning of the simulations period ( e )  , at
saturation ( e s ) , at field capacity (er c ) , at wilting point ( e w P ) , and after air
drying ( e a  ct )  , and to the minimum volume fraction of soil gas ( d )  . Measured soil
physical data are not yet available for the Tai-area. The maximum capillary rise 
(Jen mm/day) was obtained from Table III.1, loamy sand. 
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Table III.2 The input file (WATER.INP) for the water balance sub-model of DYNAMITE 

Month Ai\1R AMEpan
mm/month mm/month 

January 21 110 

February 65 114 

March 148 130 

April 170 124 

May 215 116 

June 269 80 

July 124 82 

August 132 80 
September 293 82 

October 240 110 
November 108 116 
December 47 110 

Number of soil layers: 2 
Thickness of soil layers (mm): 200, 800 
Relative distribution of water uptake over soil layer 1 and 2: 0.6, 0.4 

Layer 

1 
2 

Crop factor, f1: 1.15 

e 
0.24 
0.24 

e, 
0.40 
0.40 

0.25 
0.25 

0.05 
0.05 

0.04 
0.04 

Correction of potential evapotranspiration for interception, f2: 0.9 
Parameters used in the interception model: 
a: 5.3214. 10-5 b: 0.17959 
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d 

0.05 
0.05 

DAYSWR 

4 
4 
8 

10 
16 
22 
14 

8 
12  
14 
14 

8 

Jcr 

1.84 
2.02 

a 

44.S 
51.7 



The crop factor f1 is used to calculate Penman evapotranspiration from pan 
evapotranspiration (Eq. III.8). The daily pan evaporation in the Tai region 
ranges from 2.5-4.0 mm/day. For such a range, Poels (1987) gives an average 
value of 1.15 for f1. 

f2 is a factor in the equation (Eq. III.9) that corrects the Penman potential 
evapotranspiration for direct evaporation of intercepted canopy water. The 
value of 0.9 was taken from Poels (1987). 

The parameters a and b are used in the interception calculations (Eq. III.4). 
These values should be calibrated beforehand. 

4.3 Input file for the nutrient cycling sub-model 

Initial values for state variables: the soil components 

See Table III.3. 

In Part I, Section 3.3.3.2, it is discussed how initial values for inorganic pool 
contents for phosphorus (ININP,INSTP,INLAP) can be derived from chemical 
soil data. 

Organic pool contents for nitrogen, phosphorus, potassium and carbon. If a 
model run starts from a steady-state situation the contents of the organic labile 
(ORLA) and organic moderately labile (ORML) pools follow from the transfer 
rates of the primary organic pools (FFW, FFL, FRD, CRD) in the initialization 
procedure in the program (procedure DECCON, see Appendix III.2). In this 
case, the ORLA and ORML contents as read from Table III.3 are ignored and 
the content of the organic stabile pool (ORST), as read from the input file is 
interpreted as total content. In the initialization procedure the actual content 
of ORST is then calculated from total soil content minus the contents of the 
other organic pools in the mineral layer. 
If the steady-state situation is not known, the ORLA, ORML and ORST con­
tents are derived directly from the contents as read from the input file. So, in 
this case the ORST content, as read from the input file, is not the total soil 
content but the actual ORST content. 

Total N and P content of the soil were estimated from data by Fritsch ( 1982). 

In the model runs until now, initial solution contents (SSOLN, SSOLp, SSOLK) 
were estimated. 
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Table III.3 Initial values of state variables (kg/ha) 

State variable Elements or dry (organic) matter (DM) 

Description Symbol N p K c DM 

Soil 
inorganic inert ININ 41.65 

inorganic stable INST 70.85 
inorganic labile INLA 7.77 
organic stable ORST 1898.5 158.66 27000 

org. mod. labile ORtvIL 66.3 5.40 1270 

organic labile ORI.A 46.5 3.73 863 
soil solution SSOL 4.7 0.2 4.2 

Forest floor (litter layer) and root debris 
leaf FFL 3.8 0.72 8.1 787 

wood FFW 106.0 20.14 218.0 36940 
fine root FRD 9.8 0.29 5.9 1343 
coarse root CRD 4.7 4.55 42.8 7462 

Vegetation 
leaf LEAF 16.5 2.88 31.2 2650 
wood WOOD 711.0 135.00 1462.0 450000 
fine root FRO OT 17.2 1.65 15.0 3000 
coarse root CROOT 320.0 30.50 287.0 50000 

Initial values for state variables: the vegetation components 

The data refer to a situation in which the forest ecosystem is in steady-state. 
The dry matter in the above- ground vegetation is set at 450 tons/ha (Huttel, 
1977). The amounts and concentrations of nutrients in the vegetation compo­
nents were derived from model runs over a period of 3000 years, which gave 
a wood dry matter of content of about 450 tons/ha at steady-state. 
After initializing the model from steady state, growth following clearcutting can 
be simulated. Then contents of vegetation components are set to values as shown 
in Table I.1 in Section 3.4.2 of Part I. 

Intrinsic system variables 

See Table III.4. 

Inorganic phosphorus transfer processes were calculated according to Wolf et 
al. (1987), as discussed in Part I, Section 2.2.2.1. 
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Table III.4 Values of intrinsic system parameters 

Relative rates of transfer of inorganic P (1/yr) 
RRISIL: 0.034 RRILIS: 0.223 RRILSS: 0.105 

Distribution coefficient of adsorbed K and K in solution (Ka): 100 

Relative rates of removal of primary organic pools (1/yr) 

RRFFLR 1.0 RRFRDR 1.0 

RRFFWR 0.0667 

Initial age (a) of organic pools (yr) 
Forest floor leaves (FPL) 2.18 

RRFRCR 0.0667 

Soil organic pools 
Forest floor wood (FFW) 4.00 
Fine-root debris (FRD) 2.18 
Coarse-root debris (CRD) 4.00 

Org. labile (ORIA) 
Org. mod. lab. (ORML) 
Org. stable (ORST) 

Properties of micro-organisms 
DA: 2 CNm: 8.5 CPm: 100 NPm: 11.8 

Temperature correction factor (fr): 4 (for temp. 270 C) 

Ratio of carbon to dry matter (CDM): 0.5 

Fraction of K immediately leached from fine litter (kg/kg) 
FFFLL: 0.5 FFRDL: 0.5 

Fraction of SSOLi,b that is leached during time step (f1): 0.5

Minimum concentration for uptake from solution (Cmin) (kg/m3) 
N 1.0 10-3 P 6.0 10-6 

Logarithmic regression equation for nutrient uptake ratios 

Intercept 
Slope 

UN/UP 

8.3 
0.7 

Minimum and maximum values of uptake ratios 
N/P P/K 

Minimum 3.0 0.04 
Maximum 20.0 0.6 

K/N 
0.26 
2.6 

UP/UK 
-0.05 
0.95 

6.18 
10.18 
25.19 

Ratioofwatervolume fraction below which reduction in nutrient uptake starts to water volume fraction 
below which reduction in water uptake starts (fru) 
N 1n P 1n K i.o 

Minimum and maximum concentrations of nutrients in leaves 

Minimum 
Maximum 

N P K 
0.0075 
0.0250 

0.0003 
0.0020 

0.0040 
0.0200 

Fraction of wood allocated to branches (FBRA): 0.33 
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Parameters for the equations relating nutrient concentrations in fine roots, branches or stems to 
nutrient concentrations in leaves (kg/kg). Min = minimum concentrations, Max = maximum con-

cent rations. 

Intercept Slope Min. 

Fine roots N 0.00186 0.441 0.005 

p -0.0007 0.622 0.00012 

K -0.00539 1.255 0.001 

Branches N -0.001 0.31 0.002 

p -0.00085 1.0 0.00015 

K 0.00106 0.213 0.0019 

Stems N 0.00034 0.115 0.0012 
p -0.0004 05 0.0001 

K 0.00007 0.243 0.001 

Transpiration ratio (TRR): 300 kg water/kg dry matter

Parameters for the calculation of nutrient reduction fraction (FLRDUi) 

N 
p 
K 
DM 

lowest concentration intercept slope 
in fallen leaves (kg/kg) 
0.0051 
0.00015 
fixed value for FLRDUi: 
fixed value for FLRDUi: 

0.85 
0.78 
0.15 
0.28 

-20.0 
-166.7 

Relative rate of fine-root turnover RRFRTR (1/yr): 1.0 

Parameters for the calculation of the relative rate of leaf fall (RRLFA) 
calculation of RRLFi 

N 
p 
K 

r 
0.8 
0.8 
0.8 

s 
1.2 
1.2 
1.2 

A 
0.010 
0.0005 
0.005 

calculation of multiplication factor for light stress (fLAI) 

qi: 3 LAicr: 4 min. fLAI: 0 max. fLAI: 3 

calculation of multiplication factor for moisture stress 

qm: 3 max. fMs: 3 min. fMs: 4 

Parameters for the calculations of specific leaf area (SLA) 

q 1.99 r 405 s 2.51 

Max. 
0.014 
0.0013 
0.0075 

0.007 
0.00115 
0.005 

0.0032 
0.0006 
0.0050 

B 
0.010 
0.001 
0.010 

6804 

AFGEN (WOODDM, RRWFA); relative rate of wood fall (1/yr) as depending on wood dry matter 
(kg/ha) 
WOODDM 0 5000 15000 50000 999000 
RRWFA 0.27 0.27 0.05 0.01 

Ratio of the fraction of coarse-root turnover to the fraction of wood fall 
(fCRTR): 2 
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Distribution constants, �· The distribution factor for K (� = adsorbed con­
tent/solution content) was set at 100 (Section 3.2.4) . Linear adsorption of N 
and P was not considered in the present model runs (in principle the labile pool 
of P corresponds to adsorbed P). 

Relative rates of removal of forest floor leaf (RRFFLR) and of forest floor 
wood (RRFFWR) are the reciprocal values of residence time of forest floor 
leaves and wood (Section 3.3.1). The residence time of FFL is estimated at 1 
yr. The residence time ofFFW (branches + stems) was estimated at 15 yr from 
data by Vooren (1985) (Noij, 1988). The relative rates of removal of fine-root 
(RRFRDR) debris and coarse-root (RRCRDR) debris (Section 3.3.1) were 
set equal to those of forest floor leaf and wood, respectively. 

"Initial ages" of the organic pools are discussed in Section 3.3.2.1, 3.3.2.4, and 
in Part I, Section 3.3.3.1. 

The ratios DA, CNm, CP m and NP m of micro-organisms and the temperature 
correction factor (f1) are discussed in Part I, Section 3.2.1. 

The ratio CDM is an average of values ranging from 0.45 to 0.6 for various 
compounds in plant materials. 

The fractions of potassium in freshly fallen leaves (FFFLL), and in fresh fine­
root debris (FFRDL) that are transported directly into solution (Section 3.3.4), 
are estimated. The same holds for the value f1o the fraction of initially present 
nutrients leached during the time step. 

Below the minimum concentrations in soil solutions (Cmin i) no nutrient uptake 
' 

will take place. See Section 3.4.2. Present values are first approximations. 

Intercepts and slopes of the equations relating RA TXY up to RA TXY ss and 
minimum and maximum values of the ratios N /P, P /K and K/N for uptake are 
used in Section 3.4.2 and derived in Part II, Section 4. 

In the calculation of nutrient uptake, the moisture volume fraction at which 
reduction of nutrient uptake occurs ( e ru) is a linear function (Equation III.63) 
of the moisture volume fraction at which reduction in water uptake occurs ( er) .

At present E>ru i s  set equal to  E>r· In  other words: fru is set a t  1 on  this relation 
no literature data were available. 

Minimum and maximum leaf concentrations for N, P and K are presented in 
Part II, Section 5. 
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The fraction of branches (FERA) in newly formed wood was set at 33% (Section 
3.4.3, Eq. III.) . 

The parameters used for the calculation of nutrient concentrations in newly 
formed fine roots, branches and stems were derived from literature, a s  described 
in Part II, Section 5. 

The value for the transpiration ratio (TRR) was taken from Van Keulen and 
Wolf (1986) . 

Leaf parameters that describe the leaf-wood redistribution as a function ofleaf 
concentrations for P and N. The parameter in Column 1 is the minim um nutrient 
concentration in falling leaves, a parameter used to describe the non-linear part 
of the redistribution function as shown in Fig II.14 (Part II, Section 6.). The 
parameter in Column 2 is the slope in the linear part of the redistribution 
function in Fig. II. 14, and that in Column 3 is the intercept. Concentrations are 
expressed in kg/kg. 

The values for the reduction fraction (FLRDUi) are estimated at 0.28 for dry 
matter and at 0.15 for K (Part II, Section 6). 

The relative rate of fine root turnover (RRFRTR), was set at 1/yr as an average 
value, obtained from literature study (Part II, Section 2). 

The parameters for the calculation of specific leaf area and those for the 
calculation of the relative rate of leaf fall were derived in Part II, Section 7. 

A tabulated function for the relative rate of woodfall (RRWFA), a so-called 
AFGEN function, is used to calculate the fraction of woodfall per time step 
(Section 3.4.4) (Noij,1988). This is done by linear interpolation between the 
given values for pairs of wood dry matter and relative rates of wood fall. The 
values of these pairs have been extracted from literature data for the Tai-area 
(Jaffre & de Namur (1983). For a mature forest the relative rate of woodfall is 
0.01 /yr, indicating an average age of 100 years. Rather arbitrarity, the fraction 
of coarse-root turnover is set at two times the fraction of wood fall. 

Boundary fluxes 

See Table III.5. 

Annual atmospheric deposition rates (ARDEPi)· For phosphorus deposition 
no direct measurements were available for the Tai area. The given value of0.89 
kg/ha per year was derived from steady state calculations with the NUTCYC 
model (Noij,1988) . Recent studies by Stoorvogel (1992) show that ARDEPi for 
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P (dry deposition) and K (wet deposition) may be set at 0.1 and 2.1 kg/ha per 
year, respectively. Nitrogen bulk deposition (wet + dry) was derived form data 
of Penning de Vries & Djitiye (1982, p. 339 and 240) and Poels ( 1987) . The 
given value for N deposition is higher than found in literature; this was done to 
account for N fixation. 

The value of 20 kg/ha for annual K weathering (ARWEAK) is a first 
approximation. It is high enough to prevent deficiency of K in the vegetation. 

The relative rates of erosion of all pools considered in the mineral layer 
(RREROSk) were set at 0.001 per year. This value is based on a measured 
average erosion rate of 2500 kg/ha per year in the Tai area (Collinet et al., 
1984), for a mineral layer of20 cm thickness and a bulk density of 1350 kg/m3. 
The relative erosion rates of forest floor leaves and wood are estimated at 15% 
per year. This fraction is an average of severe erosion in periods with high 
precipitation and very little erosion in dry periods. Only the part of the forest 
floor leaves and wood that is susceptible to decomposition (FFFLR and 
FFFWR) is susceptible to erosion. 

Table III.5 Boundary fluxes and boundary flux regulating variables 

Annual rates of atmospheric deposition (ARDEPi) (kg/ha per year) 

N 30.0 p 0.897 K 4.0 

Annual rate of weathering 

ARWEAK: 20 (kg/ha per year) 

Relative rates of erosion of pool k (RREROSk) (1/year) 

Pool RREROSk Pool RREROSk Pool RREROSk 
ININ 0.001 ORST 0.001 FFL 0.15 
INST 0.001 ORML 0.001 FFW 0.15 
INlAP 0.001 ORLA 0.001 CRD 0.001 

FRD 0.001 
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5 SENSITMTY ANALYSIS OF THE MOISTURE CYCLING 

SUB-MODEL 

S.1 Introduction

Ifwe assume the model structure, process formulations and numerical procedures 
to be correct, we can analyse the sensitivity and the uncertainty of the m odel output. 
The sensitivity of a model output parameter (y) for a model input parameter (x) 
can be defined as the relative change of y with x, when x is changed by a small fixed 
amount; e.g 5%. The uncertainty of y due to the uncertainty in x can be defined as 
the relative increase of uncertainty in y due to a given uncertainty in x (Janssen et 
al., 199Qb ). The objective of sensitivity analysis is to get a quantitative overview of 
the relative importance of the input parameters. In contrast to sensitivity analysis, 
uncertainty analysis requires knowledge about the actual parameter uncertainty. 
The interpretations of results of a sensitivity analysis and an uncertainty analysis 
are strongly related. For example, the model may be extremely sensitive to the 
amount of precipitation, but still this parameter may be excluded in an uncertainty 
analysis because it can be measured very accurately. 
The sensitivity of the moisture cycling sub-model was examined by the parameter 
perturbation method. Although essential for evaluation of model performance, an 
uncertainty analysis of DYNAMITE has not yet been carried out. Time was not 
available, and information about actual input uncertainties was inadequate. 

The sensitivity of the complete model was examined by a Monte Carlo technique. 
A former version of the model was used. Due to some unfortunately chosen 
boundary conditions, however, the calculated results were far from realistic. After 
that analysis and during the final editing of this publication, in both sub-models 
some parts were adjusted and refined. No time was available to repeat the Monte 
Carlo analysis with the model in its stage at the end of the project. Therefore only 
results of the sensitivity analysis of the moisture cycling sub-module are reported. 

5.2 Subjects and procedure 

An independent sensitivity analysis was carried out on the moisture cycling sub­
model of DYNAMITE. The sensitivity of transpiration, percolation and capillary 
rise (second soil layer) was examined for the following parameters: 
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- the maximum percolation rate Jmax; 
- the rainfall amount at varying Jmax; 
- the rainfall distribution at varying Jmax;
- the time step for simulation. 

Jmax is highly uncertain, because Jmax is an empirical parameter, which bares no 
unique relationship with the hydraulic conductivity and thus can only be determined 
by calibration. The uncertainty in the water balance calculations due to uncertainty 
or poor calibration of Jmax is closely related to the amount and the distribution of 
rainfall, and the simulation time step. Although these additional parameters 
generally are not important sources of uncertainty for a specific simulation study, 
they still are included in the sensitivity analysis, to get a more general impression 
of model performance. 

The tests were carried out with observed biweekly cumulative rainfall and pan 
evaporation data from Kabo, Suriname (Poels, 1987), over a period of 3.7 years, 
starting in November, 1980. In the water balance calculations two soil layers were 
considered; a top layer of 500 mm thickness, and a bottom layer of 3700 mm 
thickness. Potential water uptake in the top layer was 80% and in the bottom layer 
20% of potential transpiration. Capillary rise was considered only for the bottom 
layer. Initial water contents in the simulations were set at field capacity. 
To give an impression of the performance of the water balance model, simulated 
actual transpiration and interception are shown in Fig. HI.9 and simulated and 
measured percolation at 4.5 m depth in Fig. III.10. The rare occurrence of trans­
piration reduction reflects the ample availability of rainfall (Fig. III.9). The fair 
agreement between simulated and observed monthly percolation illustrates the 
applicability of the moisture cycling sub-model (Fig. III.10). 

To examine the effect of rainfall amount on the water balance, simulations were 
carried out with 50% and 25% of the original biweekly rainfall amounts in Kabo. 
To examine the effect of rainfall distribution on the water balance, the original 
amount of monthly rainfall was assigned to the first two weeks, while the second 
two weeks were without rain. In both tests pan evaporation was not modified. 
To examine the effect of the time step, simulations were carried with a time step 
of two weeks and one month. For this purpose biweekly rainfall and pan evaporation 
data were added up to monthly data. 

5.3 Results, discussion and conclusions 

Maximum percolation rate 

The slopes of the curves in Fig. III.11 are a measure of the sensitivity to the water 
balance term lmax· Transpiration, percolation and capillary rise are highly sensitive 
to Jmax at low Jmax values and unsensitive at high Jmax-values. At low lmax values, 
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transpiration is reduced because of oxygen shortage. For the theoretical case where 
1max = 0, there will be no transpiration and percolation. The occurrence of a 
transpiration minimum, and consequently a percolation maximum, at low Jmax is 
caused by counteraction of the effects of oxygen shortage (Equations III.14 and 
III.15) and more efficient water conservation. A short-lived transpiration reduction 
due to oxygen stress may or may not be compensated by higher soil water availability 
in a following dry period. The critical 1max value is about 5 m m/d. For 
1max > 5 mm/d, oxygen stress will occur less frequently and hence transpiration
steadily increases till it reaches a plateau value for Jmax > 20 mm/d.

Maximum percolation rate and rainfall amount 

Independent of the absolute values of the fluxes, insensitivity to J max is reached at 
high values of J max· With increasing rainfall, the sensitivity of percolation, trans­
piration and capillary rise to 1max increases (Fig. III.12a,b,c). Increased sensitivity 
is caused by more frequent occurrence of water logging and subsequent transpiration 
reduction, with increasing rainfall. Transpiration and percolation increase, while 
capillary rise decreases with increasing rainfall. The sensitivity of percolation to the 
amount of rainfall is higher than that of transpiration, because transpiration is 
limited by the transpirative demand, while percolation is limited by the amount of 
rainfall. In the simulation with 25% of the original rainfall, no percolation occurs, 
indicating that all rainfall is consumed by evaporation and transpiration. 
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Maximum percolation rate and rainfall distribution 

Percolation as well as its sensitivity to 1max slightly increase with a less uniform 
rainfall distribution (Fig. III.13). Apparently, the water storage in the profile is 
sufficient to satisfy the transpirative demand of the vegetation also during the 
imposed intermittent dry periods of Case B. It may be expected that p ercolation, 
and its sensitivity to 1max will increase with decreasing uniformity of the rainfall 
distribution. 

Maximum percolation and time step 

Decreasing the time step from four to two weeks has no important effect on 
simulated transpiration, percolation and capillary rise, and their sensitivity to 1max 
(Fig. III.14). Decreasing of the time step has the largest effect on percolation, 
indicating a somewhat more efficient water use with smaller time steps. 

Conclusions 

The water balance calculations are not sensitive to J max above J max values of 
20 mm/d in case of high amounts of well distributed rainfall. Such a situation is 
typical in the wet tropics. The sensitivity of the water balance to uncertainty in J max• 
shows the largest increase when the amount of rainfall is lowered. Extra attention 
should be paid to calibration of the water balance model, when applying DYNA­
MITE to forest sites in dry tropical regions or to sites with poorly permeable soil 
layers. A maximum time step for realistic simulation of reduced soil water uptake 
by plants is four weeks. 
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6 FUTURE MODIFICATION 

Modifications of DYNAMITE to be considered in the future are of two kinds: 
- improvement of the present model 
- extension of the present model 

Examples of modifications of the first kind refer to: 
reduction of nutrient uptake due to water or oxygen shortage; 
the distribution of absorbed nutrients among the various plant components; 
turnover rate of fine roots; 
translocation fraction of fine to coarse roots; 
mortification rates of coarse roots and wood; 
weathering of inorganic stable P-pools and adsorption/desorption model for 
inorganic labile P; 
conversion rate of stable organic pool. 

Examples of modifications of the second kind refer to: 
the number of elements. In addition to P, N, K and C, also Ca, Mg, H, Al may 
be included. In order to simulate a complete solute balance also Na, Cl and 
S04 should be added. Furthermore a distinction between NH4 and N03 may 
be made; 
the number of soil layers; 
lateral transport; distinction of soil segments for simulation a sequence of soil 
profiles on a slope; 
the effect of pH and soil moisture on mineralization coefficients; 
a soil heat balance, to allow automatic correction of some of the rate coefficients 
for seasonal variation and for different geographic regions. As a first approach 
the temperature wave at the surface could be considered sinusoidical. Simple 
analytical procedures are av·ailable to predict the phase shift and amplitude 
dampening of the temperature wave in the soil; 
N fixation. A considerable proportion of the wood species in tropical forest 
belongs to the leguminous group (up to 30%). Many of them are living in 
symbiosis with N-fixing bacteria. Especially in cases where soil N is low, N 
fixation should be considered. The least complicated approach is assumption 
of a fixed N-fixation flux. A dynamical approach would entail a separate 
simulation of the vegetation contributing to N fixation. Up to now we did not 
distinguish between different tree species; 
denitrification which is an important loss of N in soils which are wet during part 
of the year; 
effects of pH and Al on root growth; such a relationship requires an independent 
simulation of pH and Al as mentioned above; 
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dust deposition of K in combination with a first order weathering rate equation. 
In poor sandy soils the mineral pool of K will be limited. Depletion of the 
mineral K pool by weathering and resupply of this pool by atmospheric depo­
sition will affect the K availability to plant growth, in particular for long-term 
simulation runs; 
a separate routine for easy and automatic scenario analysis. Such a routine will 
allow adaption of fluxes and pools at any point of time during a simulation. With 
the help of such a routim� the effects of timber felling, burning and cultivation 
of agricultural crops can be evaluated rather easily. Some examples of system 
characteristics subject to changes after such activities are the following: 
Timber felling: 
- decreased soil cover; 
- decreased transpiration and interception but increased soil evaporation; 
- transfer of living biomass to litter and root debris; 
- increased erosion; 
- increased soil temperature which will enhance decomposition processes. 
Burning: 
- transition of nutrients stored in organic pools to inorganic pools; 
- increase of pH which will change the availability of nutrients to the plant. 
Cultivation of agricultural crops: 
- changed plant uptake and growth characteristics; 
- removal of nutrients and organic matter due to harvesting; 
- changed erosion fraction; 
- fertilizer addition; 
- changed soil hydraulic properties due to tillage. 
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APPENDIX UI.1 LIST OF SYMBOLS IN ALPHABETICAL 

ORDER 

Regression constants without a physical meaning are not included in the list. 

Symbol Description 

amount of adsorbed substance i 

ADSi,b amount of adsorbed substance i at the 
beginning of the time step 

ADSi,e amount of adsorbed substance i at the end of 
the time step 

AGFEN (X, Y) linear interpolation function 
AMEpan average monthly pan evaporation 
AMR average monthly rainfall 
ARDEPi annual rate of atmospheric deposition of sub­

stance i 
ARWEAi annual rate of weathering of kg/ha per year 

substance i 

Co 

cdis 
cdis,k 
Cmin ,i 

CDM 
CNm 
CN5 
CPm 
CP5 
CR 
CRD 
CRDi 

CROOTi 

maximum concentration (mass fraction) of 
substance i in branches 
concentration (mass fraction) of substance i 
in newly formed branches 
carbon content of an organic poot at the 
beginning of the time step 
first order rate constant for dissimilation 
cdis of pool k
minimum soil solution concentration required 
for uptake of nutrient i 
ratio of carbon to dry matter 
C-N ratio of micro-organisms 
C-N ratio of substrate ( = organic pool)
C-P ratio of micro-organisms 
C-P ratio of substrate ( = organic pool)
coarse roots 
coarse-root debris 
amount of substance i present in coarse-root 
debris 
concentration (mass fraction) of substance i 
in newly formed coarse roots 
total amount of substance i present in coarse 
roots 
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unit 

kg/ha 
kg/ha 

kg/ha 

mm 
mm 
kg/ha per year 

kg/ha per year 

kg/kg 

kg/kg 

kg/ha 

1/yr 
1/yr 
kg/m3 

kg/kg 
kg/kg 
kg/kg 
kg/kg 
kg/kg 

kg/ha 

kg/kg 

kg/ha 



CROOTCi concentration (mass fraction) of nutrient i in kg/kg 
coarse roots 

CRTCAi maximum concentration (mass fraction) of kg/kg 
substance i in coarse roots (A = accumula-
tion) 

CRTCDi minimum concentration (mass fraction) of kg/kg 
substance i in coarse roots (D = dilution) 

D thickness of soil layer mm 
DA dissimilation-assimilation ratio of micro-or-

ganisms 
DAYSWR average number of days with rain per month 
E evaporation mm/time step 
Eo open-water evaporation mm/time step 
Eact actual soil evaporation mm/time step 
E· I direct evaporation from the cacopy mm/time step 
Epan pan evaporation mm/time step 
ET evapotranspiration mm/time step 
ETpot potential evapotranspiration mm/time step 
ET pot' evaporative demand of soil and vegetation mm/time step 
Faep,i flux of subsytance i by atmospheric wet kg/ha per time 

deposition step 
Fin,i flux of substance i from overlying soil layer kg/ha per time 

step 
Fmin,i flux of substance i by mineralization from all kg/ha per time 

organic pools step 
Fout,i flux of substance i by leaching kg/ha per time 

step 
Fwea,i flux of substance i by weathering from all kg/ha per time 

inorganic pools step 
FBRA fraction of wood allocated to branches kg/kg 
FCRDR fraction of coarse-root debris that is removed 1/time step 

per time step 
FCRTR fraction of coarse roots that is turned over per 1/time step 

time step 
FERk erosion fraction of pool k per time step 1/time step 
FFFILLK fraction of K in fresh forest floor leaves that is kg/kg 

leached immediately 
FFFLR fraction of forest floor leaves that is removed 1/time step 

per time step 
FFFWR fraction of forest floor wood that is removed 1/time step 

per time step 
FFL forest floor leaves (leaf litter) 
FFLi total amount of substance i present in forest kg/ha 

floor leaves 
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FFRCRT fraction of rate of fine-root turnover that is kg/kg 
translocated to coarse root 

FFRDLK fraction of K in fresh fine-root debris that is kg/kg 
leached immediately 

FFRDR fraction of fine-root debris that is removed 1/time step 
per time step 

FFRTR fraction of fine roots that is turned over per 1/time step 
time step 

FFW forest floor wood (wood litter) 
FFW· l total amount of substance i present in forest kg/ha 

floor wood 
FLFA fraction of leaves that falls 1/time step 
FLRDUi reduction fraction of total amount of sub- kg/kg 

stance i in leaves before leaf fall 
FRNCi concentration (mass fraction) of substance i kg/kg 

in newly formed fine roots 
FRNCi1 concentration (mass fraction) of the limiting kg/kg 

nutrient in newly formed fine roots 
FROOTi total amount of substance i present in all fine kg/ha 

roots 
FROOTCj concentration (mass fraction) of substance i kg/kg 

in fine roots 
FROOTCAi maximum concentration (mass fraction) of kg/kg 

substance i in fine roots 
FROOTCDi minimum concentration (mass fraction) of kg/kg 

substance i in fine roots 
FWFA fraction of wood that falls per time step 1/time step 

FWUi potential water uptake from soil layer j as mm/mm 
fraction of total potential water uptake ( = 

potential transpiration) 
GROW growth (dry matter) per time step kg/ha per time 

step 
GROW CR growth of coarse roots kg/ha per time 

step 
GROWFR growth of fine roots kg/ha per time 

step 
GROWL growth of leaves kg/ha per time 

step 
GROWLmax maximum leaf growth as determined by Tact kg/ha per time 

step 
GROWLAi growth of leaves when the concentration kg/ha per time 

(mass fraction) of nutrient i would be maxi- step 
mum 
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GROWLAmax 

GROWLDi 

GROWLDmin 

GROWW 

la 

I NI NP 
INLAP 
INSTP 
Jass 

Jass,i 

Jconv 

Jconv,i 

Jcr 

Jdat 

Jdat, i 

Jdis 

Jdis,k 

Jin 

J1sp,k 

Jmax 
Jmin 

Jmin,i 

Jout 

maximum of GROWLAi for i = N, P or K 

growth of leaves when the concentration 
(mass fraction) of nutrient i would be mini-
mum 
minimum of GROWLDi for i = N, P or K 

growth of wood (stem + branches) 

canopy interception of rain 

phosphorus in inorganic inert pool 
phosphorus in inorganic labile pool 
phosphorus in inorganic stable pool 
assimilation flux 

Jass of substance i

conversion flux 

Jconv of substance i

maximum capillary rise 

Jdis + Jtra 

Jdat of substance i

dissimilation flux 

Jdis of pool k

incoming water flux (in soil layer) 

flux of instantaneous release of K from the 
last sub-pool of a primary organic pool at the 
end of the time step 
maximum percolation rate 
mineralization flux 

J min of substance i

outgoing water flux (from soil layer) 
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kg/ha per time 
step 
kg/ha per time 
step 

kg/ha  per time 
step 
kg/ha per time 
step 
mm/day, or 
mm/time step 
kg/ha 
kg/ha 
kg/ha 
kg/ha per time 
step 
kg/ha per time 
step 
kg/ha per time 
step 
kg/ha per time 
step 
mm/day, or 
mm/time step 
kg/ha per time 
step 
kg/ha per time 
step 
kg/ha per time 
step 
kg/ha per time 
step 
mm/day, or 
mm/time step 
kg/ha per time 
step 

mm/day 
kg/ha per time 
step 
kg/ha per time 
step 
mm/day, or 
mm/time step 



JOU \ ,  0 outgoing water flux when the water volume mm/day, or 

fraction of the soil layer is e mm/time step 

Irel,K release flux of K from primary organic pools kg/ha per time 
step 

Jtra transfer flux kg/ha per time 
step 

Jtra,i Jtra of substance i kg/ha per time 
step 

J a  water flux when water volume fraction is e mm/day, or 

mm/time step 

� distribution coefficient of adsorbed K and K (kg/ha)/ (kg/ 
in soil solution ha) 

LAI leaf area index ha/ha 
LEAF leaves 
LEAFi total amount of substance i present in leaves kg/ha 
LEAFCi concentration (mass fraction) of substance i kg/kg 

in living leaves 
LEAFCi,b concentration (mass fraction ) of substance i kg/kg 

at the beginning of the time step 
LEAFCAi maximum concentration (mass fraction) of kg/kg 

substance i in living leaves 
LEAFCDi minimum concentration (mass fraction) of kg/kg 

substance i in living leaves 
LEAFLCj lowest possible concentration (mass fraction) kg/kg 

of substance i in falling leaves 
LNCj concentration (mass fraction) of substance i kg/kg 

in newly formed leaves 
M actual mineral mass kg/ha 
Mo initial mineral mass kg/ha 
MEpan monthly pan evaporation mm per month 
MR monthly rain fall mm per month 
NANi amount of nutrient i in soil solution that is not kg/ha 

available to plants 
NGROWCRi net increase of amount of substance i in kg/ha per time 

coarse roots step 
NGROWFRi net increase of amount of substance i in fine kg/ha per time 

roots step 
NGROWLi net increase of amount of substance i in kg/ha per time 

leaves step 
NGROWWi net increase of amount of substance i in wood kg/ha per time

(stem + branches) step 
ORLA organic labile pool 
ORLAi total amount of substance i present in ORLA kg/ha 
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ORML 
ORMLi 
ORST 
ORS Ti 
p 
POOLk,i
PORP 

POPRi 
Q 

Gav 

RATX,Yss 

RATX,Yup 

RA TX, Y up,max 

RA TX,Y up,min 

RCRTR 

RCRTRi 

RDEPi 

RFRCR 

RENWi 

REROSk 

RFRCRi 

RFRSL 

RFRSLi 

RFRTR 

RLFA 

organic moderately labile pool 
total amount of substance i present in ORML kg/ha 
organic stable pool 
total amount of substance i present in ORST kg/ha 
daily precipitation mm/day 
amount of substance i in pool k kg/ha 
primary organic pool ( = FFL, FFW, FRD, or
CRD) 
amount of substance i in primary organic pool kg/ha 
average precipitation intensity on days with mm/day 
rain during actual time step in the model 
average precipitation intensity on days with mm/day 
rain during the whole simulation period 
ratio of amount of nutrient X to amount of 
nutrient Y in soil solution 
ratio of uptake of nutrient X to uptake of 
nutrient Y 
maximum value that can be obtained for 
RATX,Yup 
minimum value that can be obtained for 
RATX,Yup 
rate of coarse-root turnover kg/ha per time 

step 
rate of transfer of substance i from coarse kg/ha per time 
roots to coarse-root debris step 
rate of atmospheric deposition of substance i kg/ha per time 

step 
rate of transfer from fine roots to coarse kg/ha per time 
roots step 
rate of wood �ntering by nutrient i kg/ha per time 

step 
rate of erosion of pool k kg/ha per time 

step 
rate of transfer of substance i from fine roots kg/ha per time 
to coarse roots step 
rate of fine-root sloughing kg/ha per time 

step 
rate of transfer of substance i from fine roots kg/ha per time 
to fine-root debris step 
rate of fine-root turnover kg/ha per time 

step 
rate of leaf fall kg/ha per time 

step 
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RLFAi transfer of substance i by leaf fall kg/ha per time 
step 

RILISp rate of P transfer from inorganic labile to kg/ha per time 
inorganic stable pool step 

RILSSp rate of P transfer from inorganic labile pool kg/ha per time 
to soil solution step 

RISILp rate of P transfer from inorganic stable to kg/ha per time 
inorganic labile pool step 

RLWREi rate of redistribution of nutrient i from leaf to kg/ha per time 
wood step 

RRCRDR relative rate of removal of coarse-root debris 1/yr 
RRCRTR relative rate of coarse-root turn over 1/yr 
RREROSk relative rate of erosion of pool k 1/yr 
RRFFLR relative rate of removal of forest-floor leaves 1/yr 
RRFFWR relative rate of removal of forest-floor wood 1/yr 
RRFRDR relative rate of removal of fine-root debris 1/yr 
RRFRTR relative rate of fine-root turn over 1/yr 
RRILIS relative rate of transfer from inorganic labile 1/yr 

to inorganic stable pool 
RRILSS relative rate of transfer from inorganic labile 1/yr 

pool to soil solution 
RRISIL relative rate of transfer from inorganic stable 1/yr 

to inorganic labile pool 
RRLFi relative rate of leaf fall as determined by sub- 1/yr 

stance i only 
RRLFA relative rate of leaf fall 1/yr 
RRWFA relative rate of wood fall 1/yr 
RWFA rate of wood fall kg/ha per time 

step 
RWFAi transfer of substance i by wood fall kg/ha per time 

step 
s sink term; ratio of actual and potential water 

uptake from soil layer j 
SFI soil fertility index, ratio of actual leaf growth 

and maximum leaf growth 
(GROWL/GROWLmaJ 

SLA specific leaf area m2/kg 
SSOL soil solution 
SSOLi amount of substance i in soil solution kg/ha 
SSOLi,b amount of substance i in soil solution atthe kg/ha 

beginning of the time step 
SSOLi,e amount of substance i in soil solution at the kg/ha 

end of the time step 
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STEMCAi 

STEMNCi 

SUPCRi 

SUPWi 

T 
Tact 

Tpot

TINP 

TRR 

UPact,i 

UPact,il 

UPmax,i 

UPFRi 

UP Li 

UPLact,i 

UPLAi 

UPWi 

Wact 

Wact,j 

wpot,j

WOOD 
WOO Di 
WOODCj 

maximum concentration (mass fraction) of 
substance i in stems 
concentration (mass fraction) of substance i 
in newly formed stems
amount of nutrient i that cannot be retained 
in coarse roots, and is sent back to solution 
amount of nutrient i that is not retained in 
newly formed wood, and is sent back to soil 
solution 
temperature 
actual transpiration 

potential transpiration 

total inorganic P ( = INLAP + INSTP + 
ININP) 
transpiration ratio, kg water transpired per kg 
dry matter produced 
total actual uptake of nutrient i 

total actual uptake of nutrient limiting fine 
root growth 
maximum uptake of nutrient i 

uptake of nutrient i in fine roots 

uptake of nutrient in leaves (difference
between UPi,act and UPFRi) 
actual uptake of nutrient i in leaves (mini-
mum of UPLi and UPLAi 
uptake of nutrient i in leaves at maximum 
concentration of i newly formed leaves 
direct uptake of nutrient i in wood 

actual uptake of water 

actual uptake of water from soil layer j 

potential uptake of water from soil layer j 

wood (stems plus branches) 
amount of substance i in wood 
concentrtion (mass fraction) of substance i in 
wood 
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kg/kg 

kg/kg 

kg/ha per time 
step 
kg/ha per time 
step 

oc
mm/per time 
step 
mm/per time 
step 
kg/ha 

kg/kg 

kg/ha per time 
step 
kg/ha per time 
step 
kg/ha per time 
step 
kg/ha per time 
step 
kg/ha per time 
step 
kg/ha per time 
step 
kg/ha per time 
step 
kg/ha per time 
step 
mm/per time 
step 
mm/per time 
step 
mm/per time 
step 

kg/ha 
kg/kg 



WOODNCj 

Ytot,b 
Ytot,e 

concentration (mass fraction) of substance i 
in newly formed wood 
initial amount of organic matter 
amount of organic matter remaining at time t 
organic matter in all sub-pools of a primary 
organic pool 
Ytot at the beginning of the time step
Y101 at the end of the time step 
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kg/kg 

kg/ha 
kg/ha 
kg/ha 

kg/ha 
kg/ha 



a apparent initial age of organic materials yr 
ai,b age of organic sub-pool i at the beginning of yr 

the time step 
ai,e age of organic sub-pool i at the end of the yr 

time step 

Cl correction term for precipitation in the calcu-
lation of Ia from P 

C2 correction term for evaporative demand in 
the calculation of Ia from P 

fi crop factor (Epot' /Epan)
f2 fraction of energy for Ei that is obtained

directly from irradiation 
f1 fraction of nutrients present at the beginning 

of a timestep, that is leached from soil solu-
tion during time step 

fLAI correction factor for light stress in the calcu-
lation of RRLF A 

fMs correction factor for moisture stress in the 
calculation of RRLFA 

fru ratio of water volume fraction below which 
reduction in nutrient uptake starts to water 
volume fraction below which reduction in 
water uptake starts 

ft temperature correction factor for relative rate 
of decomposition organic matter 

qi maximum value of f LAI 
<Im maximum value of f MS 
'lr ratio of CROOToM/FROOToM to SFI 
t time yr 
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a multiplication factor in the calculation of J e , 

to take into account e of underlying layer

13 exponent for sensitivity in the calculation of a 

o t time step yr 

e volume fraction of water in soil mm3/mm3 

e ad volume fraction of soil water after air drying mm3/mm3 

e b volume fraction of water at the beginning of mm3/mm3 

the time step 

G e volume fraction of water at the end of the mm3/mm3 

time step 

e fc volume fraction of soil water at field capacity mm3/mm3 

e r volume fraction of soil water below which mm3/mm3 

uptake of water is reduced due to drought 

e ru volume fraction of soil water below which the mm3/mm3 

uptake of nutrients is reduced 

e wp volume fraction of soil water at wilting point mm3/mm3 

er discontinuous function of transpirative 
demand 

L: ini sum of net inputs of nutrient i into soil sol- kg/ha per time 
ution step 

L: ink,i sum of inputs of nutrient i into pool k kg/ha per time 
step 

L: outk,i sum of output of nutrient i from pool k kg/ha per time 
step 
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APPENDIX III. 2 MODEL USE 

Design, editing, compilation and linking in TURBO PASCAL 4.0 

The water balance sub-model in DYNAMITE uses an implicit calculation scheme. 
The nutrient cycling model uses a fully explicit scheme. In the nutrient cycling model, 
a time step starts with updating state variables using rates and flows from the 
previous time step. Next, auxiliary variables are updated and new rates and flows 
are calculated. The simulation starts at time=O with state variables read form the 
input files. 

The simulation program DYNAMITE is written in PASCAL (TURBO version 4.0, 
Borland Co.) . The name of code of the main program DYNAMITE is DYNA­
MITE.PAS. In the main program the time step loop is controlled (from time= O  to 
time= finish time), and the calls to the PROCEDURES are made. The codes of 
the PROCEDURES are stored in so-called UNITS. 

A UNIT in TURBO PASCAL-4.0 is almost like a separate program;  it can be 
compiled separately and is included in the main program only when it is needed. 
The use of UNITS allows for the use of larger programs. 

Table IIIA.1 shows the UNITS with the corresponding PROCEDURES, and a 
short description of the function of the PROCEDURE. 

The code names of the units are of the type "UNITname".PAS. After compilation, 
using the TURBO PASCAL-4.0 compiler, "UNITname".TPU files are produced. 
Some UNITS use other UNITS; e.g. the output from the water balance sub-model, 
WATER, is used in the growth model GROWTH.PAS. The UNIT DECLAR 
contains all the global declarations and is used by all other UNITS. Most variables 
are declared in the UNIT DECLAR. 

During compilation the main program DYNAMITE.PAS scans the active 
DIRECTORY for all the "UNITname".TPU-files. If the UNITS are not present,
they will be produced from the "UNITname" .PAS-files. The UNITS are linked with 
DYNAMITE.PAS and written to the executable file DYNAMITE.EXE. Now the 
program is ready for execution, and can be run without the compiler on a 
IBM-compatible DOS-PC, by typing "DYNAMITE". If one wants to make changes 
in the programme, the TURBO PASCAL-4.0 compiler will be needed to make a 
new .EXE version of the program. Changes in the input files can be made with any 
text-editor allowing input and output of ASCII-files. 
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Table IIIA.1 Units and procedures in DYNAMITE 

Unit 

DECLAR 
INIT 

Procedure 

.HEAD 

.READING 

.INITIAL 
ORGDECOM .DECCON 

NWPTOTCH .NWPOOL 

RATS 
WATER 
DEPERWEA 

DEC 

LITTER 

GROWTH 

LEACH 

OUT 

.TOT ALI 

.CHECKSUM 

.RATIOS 

.WATERBAL 

.DEPOSITION 

.EROSION 

.WEATHERIN 

.ORGDEC 

.LITDEC 

.UPTAKE 

.LEA CHI 

.OUTPUT 

Description 

contains all global declaration 
puts heading above output files 
reading and echoing of input file 
initialization procedures 
initialization of initial organic pool contents 
and decomposition/conversion rates 
calculation of new pool contents as result of all 
flows within a time step 
adding of rates to total rates over the simulation 
period 
checking of nutrient balance 
calculation of element ratios in organic pools 
water balance calculations 
calculation deposition per time step 
calculation of erosion of organic and inorganic 
pools 
calculation of weathering rates 
calculation of decomposition and transfer from 
organic pools 
litter decomposition and transfer + calculation
of total decomposition + weathering + 
deposition flux to solution 
calculation of uptake, growth, leaf fall, wood 
fall and root turnover 
calculation of nutrient leaching flux and new 
solution pool content 
output to output files 
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Running the program DYNAMITE 

The simulation program is started by executing the DYNAMITE.EXE file on the 
MSDOS-PC. 
Before starting the actual simulation the question "desired output files?" appears 
on screen. Typing "1", will produce 18 separate output files for various state variables, 
flows and ratios of N, P, K and C. Typing "2" produces 3 files in which total inflow, 
outflow and element content of the ecosystem during the simulation are given 
(checksums) . An overview of the produced output files is shown in Table IIIA.2. 
If option "l" is chosen after finishing the simulation with DYNAMITE, the program
ALLOUT can be used to group several of the output files to one or more new output 
files. This is done by calling ALLOUT. Several output options appear on screen 
and output is written to TOT[option].PAS. 
The second question after starting DYNAMITE is whether initial organic pool 
contents and decomposition/ conversion constants are input or should be calculated. 
When it is the first time the program is run, answer "YES". Calculated contents and 
constants are stored in the output file DECPAR.OUT. In a second run, if time step 
and total element content of the soil are the same, the answer can be "NO" and 
values for pool contents and rate constants will be read from DECPAR.OUT. 
Now the actual simulation will start. Output to the screen and screen control is 
programmed in the procedure OUTPUT. 
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Table IIIA.2 The output files of DYNAMITE 

Name unit no. Element Compartment Variables 

PSTATE.OUT 10 p total system state variables 
PFLSSl.OUT 11 p soil & forest floor rates & flows 
PFLSS2.0UT 12 p soil & forest floor rates & flows 
PFLWSV.OUT 13 p vegetation rates & flows 
NSTATE.OUT 20 N total system state variables 
NFLSSl.OUT 21 N soil & forest floor rates & flows 
NFLSS2.0UT 22 N soil & forest floor rates & flows 
NFLWSV.OUT 23 N vegetation rates & flows 
KSTATE.OUT 50 K total system state variables 
KFLSSl.OUT 51 K soil & forest floor rates & flows 
KFLSS2.0UT 52 K soil & forest floor rates & flows 
KFLWSV.OUT 53 K vegetation rates & flows 
CSTATE.OUT 30 c total system state variables 
CFLWSl.OUT 31 c soil & forest floor rates & flows 
CFLWS2.0UT 32 c soil & forest floor rates & flows 
CFLWSV.OUT 33 c vegetation rates & flows 
CPRAT.OUT 40 C/P soil & forest floor auxiliary variables 
CNRAT.OUT 41 C/N soil & forest floor auxiliary variables 
PCHECK.OUT 61 p total system checksums 
NSTATE.OUT 62 N total system checksums 
CSTATE.OUT 63 c total system checksums 
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